首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
以煤焦油为原料,在高压固定滴流床反应器中,以工业NiMo/Al2O3为催化剂,考察了360-380℃范围内煤焦油的产物分布,基于此建立了5集总煤焦油加氢裂化动力学模型。动力学模型的集总包括:未反应的煤焦油、柴油、汽油、气体和焦炭。通过对实验产物与模型预测产物的对比数据,发现本文所建立的动力学模型可以用于煤焦油加氢裂化过程。同时,基于动力学模型,进一步分析了煤焦油的加氢裂化机理:在整个煤焦油加氢裂化过程中,柴油馏分可作为反应中间组分。  相似文献   

2.
用正交配置法模拟加氢裂化反应器   总被引:1,自引:0,他引:1  
结合物料平衡、能量平衡和加氢裂化反应动力学方程,按照加氢裂化反应的特点,建立了加氢裂化反应器6集总动态机理模型。反应动力学采用原料油、柴油、航空煤油、重石脑油、轻石脑油、气体6集总模型。对总动态机理模型提出了正交配置法和龙格-库塔法相结合的求解方法。新的求解方法计算量小、精度高,并且能求得微分数学模型的近似解析解。应用6集总动态机理模型对加氢裂化反应器进行了模拟,考察了模型的预测精度。模拟结果表明,该模型能较好地模拟和预测加氢裂化产品的收率分布和反应器的温度分布,具有较高的预测精度,模型可靠。  相似文献   

3.
选用3824加氢裂化催化剂,对正十烷加氢裂化动力学进行了研究。根据Weekman集总理论,建立了正十烷加氢裂化四集总动力学模型。用Marquardt法估计了各反应速率常数,确定了较完善的速率表达式和表现活化能,同时讨论了空速、温度、压力和反应活化能对产物分布的影响,为石油馏份加氢裂化集总动力学研究提供了基础数据。  相似文献   

4.
十三集总催化重整反应动力学模型研究   总被引:3,自引:0,他引:3  
根据集总理论 ,从催化重整反应规律出发 ,提出了包含十三个集总组分的催化重整反应模型。该模型将重整物料按分子大小集总为C6 ,C7,C8和C+ 9组分 ,每一个碳数的化合物又划分为烷烃、环烷烃和芳烃三个集总 ,裂化产物C- 5组分作为一个集总。集总组分之间主要发生烷烃脱氢环化、环烷烃脱氢芳构化和加氢裂化反应。根据重整反应特点建立了相应的动力学模型 ,并编制了工业重整反应器的模拟计算软件 ,可预测催化重整产物组成、产品产率和重整反应器温降 ,计算结果与生产数据基本吻合。  相似文献   

5.
以800 kt/a重油加氢裂化装置为背景,根据加氢裂化反应机理,建立了四集总模型作为加氢裂化反应动力学模型。采用高斯-牛顿法对模型的参数进行了估计和四阶龙格-库塔法计算有初始值的常微分方程,并用现场实测数据进行了验证。结果表明:模型的计算值与实测值平均相对误差小于5%,因此该集总模型具有较高的模拟精度。  相似文献   

6.
在不同反应温度、氢初压条件下,通过高压反应釜对克拉玛依常压渣油(KLAR)进行加氢裂化实验,以此模拟悬浮床加氢裂化过程,并根据实验数据及实际工艺中对各种轻油产品收率预测的需求建立了悬浮床加氢裂化六集总(气体、汽油、柴油、蜡油、减压渣油、焦)动力学模型,用matlab软件进行编程,采用最小二乘法对动力学参数进行估算,并进行误差分析。结果表明,建立的六集总动力学模型能很好的对各集总产品收率进行预测,计算结果与实验值基本吻合,大部分误差在5%以内。  相似文献   

7.
以高压加氢裂化六集总动力学模型为基础,建立预测催化剂组合体系产品分布的数学模型。按固定馏程间隔将原料油和加氢裂化生成油划分为减压蜡油 加氢裂化尾油(>360℃)、柴油馏分(290~360℃)、喷气燃料馏分(175~290℃)、重石脑油馏分(65~175℃)、轻石脑油馏分(<65℃)和炼厂气(C4-)6个集总。分别以2种不同类型加氢裂化催化剂的实验数据为基础,采用Matlab 2011b数值计算软件和非线性最小二乘法对动力学模型参数进行了优化回归。以优化回归后的动力学模型参数为初值,调整部分模型参数,建立了预测催化剂组合体系产品分布的数学模型。用该模型计算得到的加氢裂化产品分布与实验值之间的一致性较好,其偏差均小于2%。  相似文献   

8.
在国产加氢裂化催化剂3824上,利用连续流动微型反应装置,对四氢萘加氢裂化动力学进行了研究。根据四氢萘加氢裂化的反应结果,在一定的简化条件下,建立了四氢萘加氢裂化应集总网络。用Marguardt法估计了条步反应速率常数,预测了各反应产物分布,其结果与实验吻合。同时,讨论了空速、温度、反应活化能对产物分布的影响,为馏分油加氢裂化集总动力学研究提供了基础数据。  相似文献   

9.
中低温煤焦油加氢脱金属动力学研究   总被引:2,自引:1,他引:1  
在小型固定床加氢装置上,用加氢保护催化剂、加氢脱金属催化剂和加氢裂化催化剂对煤焦油进行了加氢脱金属动力学研究。考察了反应温度、氢分压、液态空速等操作参数对加氢脱金属反应活性的影响,建立了煤焦油加氢脱金属反应的动力学模型,通过Levenberg-Marquardt法拟合出各动力学参数,同时采用实测数据对模型进行了验证。实验结果表明,煤焦油加氢脱金属反应为1.2级反应,活化能为53.896kJ/mol,煤焦油加氢脱金属反应与渣油加氢脱金属反应类似;对加氢脱金属影响大小的参数顺序为:液态空速>反应温度>氢分压;动力学模型的相对误差均小于2.7%,该模型可较准确地预测产品中的金属含量。  相似文献   

10.
以实验室加氢裂化催化剂A的加氢裂化反应结果为基础,建立了减压蜡油加氢裂化六集总动力学模型。六集总的划分原则以实际加氢裂化产品切割方案为参照,按馏程把原料油和生成油划分为六个集总,即减压蜡油-加氢裂化尾油(360℃)、柴油馏分(290~360℃)、喷气燃料馏分(175~290℃)、重石脑油(65~175℃)、轻石脑油(65℃)和炼厂气(C4-)。在Matlab 2011b数值计算软件上,利用非线性最小二乘法对动力学模型参数进行了优化回归。通过统计分析,忽略部分集总间的反应,模型预测所得加氢裂化产物收率与实验结果的最大偏差为1.80%,满足工业应用要求。  相似文献   

11.
高温煤焦油加氢制取汽油和柴油   总被引:17,自引:4,他引:13  
以山西某焦化厂高温煤焦油为原料,采用加氢保护剂、加氢脱金属催化剂、加氢精制催化剂、缓和加氢裂化催化剂组成的级配方式在小型加氢评价装置上进行加氢工艺研究,并在系统压力12.0M Pa条件下考察了反应温度、氢与油体积比、液态空速对高温煤焦油加氢的影响。实验结果表明,在系统压力12.0M Pa、温度380℃、氢与油体积比1 800∶1、液态空速0.28h-1的条件下对高温煤焦油进行加氢改质,可以实现煤焦油的轻质化,汽油馏分(初馏点~200℃)、柴油馏分(200~360℃)、加氢尾油(高于360℃)分别占产物质量的17.69%,62.04%,20.27%。加氢尾油可作为优质的催化裂化或加氢裂化掺炼原料。  相似文献   

12.
采用沸腾床渣油加氢处理工艺对掺炼一定比例煤焦油的劣质渣油进行加氢处理研究,考察其产品分布情况;并采用斑点试验、不稳定性参数试验对混合原料的相容性及加氢处理后体系的稳定性进行考察。试验结果表明:劣质渣油与煤焦油按7:3比例混合进行加氢处理,小于500 ℃馏分油收率增加24.33百分点,焦炭产率降低;相容性方面,混合原料的相容性要差于纯减渣原料,但经加氢处理后,混合原料稳定性得到大幅改善,而减渣原料稳定性降低。  相似文献   

13.
中国石化抚顺石油化工研究院开发的煤焦油高压加氢处理与加氢裂化两段加氢组合工艺生产清洁燃料油技术在某炼油厂160 kt/a煤焦油加氢装置的工业应用结果表明,以煤焦油预处理后的小于500 ℃馏分油为原料,在反应压力为15.0 MPa、氢油体积比为1 000、加氢处理反应温度为(基准+10)℃、体积空速为(基准+0.2)h-1、加氢裂化反应温度为(基准+30) ℃、体积空速为(基准+0.2)h-1的条件下,小于160 ℃馏分硫质量分数为3.3 μg/g,辛烷值(RON)为65.3,可作为低硫石脑油;160~375 ℃柴油馏分的密度为0.852 5 g/cm3,十六烷值为49.5,凝点为-10 ℃,是优质的柴油调合组分;大于375 ℃加氢裂化尾油硫质量分数为2.6 μg/g,芳烃质量分数为2.0%,是很好的润滑油基础油原料。  相似文献   

14.
在中型试验装置上,以煤焦油全馏分为原料,采用加氢精制-加氢裂化两段法工艺技术路线,对煤焦油原料进行加氢提质,以生产清洁燃料油。考察了反应温度、压力、空速和氢油比对加氢精制生成油性质的影响规律;并对加氢精制尾油开展了加氢裂化试验,确定了适宜的加氢裂化工艺条件。结果表明:在适宜的工艺条件下,石脑油和柴油馏分收率超过95%,其中柴油馏分硫质量分数低于10 ?g/g、十六烷值接近45。催化剂2 600 h运转稳定性考察期间,产品性质保持稳定。本技术实现了煤焦油轻质化、清洁化利用的目的,具备工业长周期运转的条件。  相似文献   

15.
采用150 kg/d悬浮床加氢裂化中试装置,以全馏分高温煤焦油为原料,考察了反应温度、反应质量空速及反应压力对煤焦油加氢裂化反应性能及产物分布的影响。结果表明:升高反应温度和降低反应质量空速,均可以促进煤焦油中重油和沥青质的深度转化,气体和焦炭收率增加,重油收率降低,但过高的反应温度会降低轻油馏分收率;提高反应压力可以抑制气体和焦炭的生成,促进沥青质的加氢转化,保证了较高的轻油收率。在反应温度为465℃,反应压力为22 MPa,反应质量空速为0.5 h-1,氢气/原料油(体积质量比,L/kg)为1 500的最佳条件下,重油和沥青质的转化率分别达到26.05%和62.95%,轻油收率为77.42%,气体和焦炭收率为17.28%。  相似文献   

16.
采用悬浮床加氢装置对陕北中低温煤焦油进行了加氢裂化试验研究,考察了反应中温度、压力、空速等工艺条件对中低温煤焦油加氢转化率的影响.结果表明:反应空速、反应温度对陕北中低温煤焦油整体转化率的影响较大.在反应温度为455℃,反应压力为18 MPa,反应空速为0.5 kg/(h·L)的条件下,加氢裂化反应效果较佳,>500℃...  相似文献   

17.
以中/低温煤焦油重组分(CTAR)为原料进行了悬浮床加氢实验,通过1H-NMR、XRD、IR、元素分析及分子量测定手段对生焦前驱体(HI)进行了分析,以显微镜观测、SEM、IR等方法对焦碳的官能团、堆积结构及表面形态进行了研究,推测了CTAR加氢过程的生焦机理。结果表明,CTAR悬浮床加氢效果理想,HI芳环稠度低,侧链少而短,平均分子量低,分子间缔合性小,没有芳香片层堆积结构,不易裂化产生大分子自由基,是轻质生焦前驱体。焦碳为1 μm左右的球状颗粒吸附于碳质颗粒而形成的10 μm左右的聚合体,CTAR中分布的甲苯不溶物及硫化的催化剂颗粒在反应中提供的“两个结焦中心(催化剂和微晶粒子),一个吸附中心(碳质颗粒)”使焦粒变小、壁相焦减少。  相似文献   

18.
采用USY型分子筛为载体,通过浸渍法制备了Co-Mo/USY催化剂,采用XRD,NH3-TPD,H2-TPR等手段对催化剂进行表征,并用硫代硫酸铵对催化剂进行器外预硫化,在连续固定床上考察了不同Mo负载量催化剂对煤焦油加氢裂化性能的影响。结果表明:催化剂的最佳Mo负载量(w)为12%,在反应温度385 ℃、压力9 MPa、质量空速0.6 h-1、氢油体积比1 000:1的条件下,煤焦油加氢裂化的轻质油收率为86%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号