首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
以糠醛为萃取剂,采用模拟软件Aspen Plus对环己烷-苯共沸物体系的分隔壁塔萃取精馏工艺进行了模拟优化。利用单变量灵敏度分析考察了分隔壁萃取精馏塔的塔板数、回流比、溶剂比、萃取剂和原料的进料位置等因素对产品纯度及再沸器热负荷的影响。确定了最优的工艺条件:分隔壁萃取精馏塔主塔及副塔的理论板数分别为34和10,回流比分别为2和3,主塔溶剂比为2.4,原料和萃取剂的进料位置分别为第22块板和第7块板,气相分配比为0.2,侧线抽出板的位置为主塔的第31块板。与传统的萃取精馏相比,分隔壁塔萃取精馏工艺可降低能耗13.5%。  相似文献   

2.
利用分隔壁精馏塔实验室小试装置对苯、甲苯、二甲苯三组分芳烃混合物的分离进行了初步探索,考察了进料组成、进料速度、回流比、分配比等因素对分离效果的影响。结果表明,当分隔壁精馏塔进料中甲苯的体积分数为60%、苯和二甲苯的含量相当、进料速度为1.1mL/min、分配比为1:2、回流比为6:1时,分离效果最佳,此时塔顶采出苯的质量分数达到94.9%,侧线采出甲苯的质量分数为96.4%,塔釜中不含轻组分。  相似文献   

3.
提出了一种新的单塔萃取精馏精制芳烃和非芳烃的新工艺,新工艺采用分隔壁萃取精馏塔替代常规萃取精馏流程的萃取精馏塔及溶剂回收塔,不仅节省了设备投资,而且降低了总能耗。利用ASPENPLUS模拟软件,对分隔壁萃取精馏塔及常规萃取流程进行了模拟,考察了溶剂比、回流比及分配比对分隔壁萃取精馏塔的影响,并对两种流程进行了比较,结果表明,分隔壁萃取精馏塔的最佳操作条件为:塔板数为41块,侧线精馏段的板数为10块,回流比为1,溶剂比为3.5,分配比为1.25。在此条件下,分隔壁萃取精馏塔比常规的两塔萃取精馏流程节能25.2%。  相似文献   

4.
采用Aspen Plus软件对二氯甲烷废溶剂回收分离过程进行模拟研究,确定了萃取塔(T1)的理论塔板数、萃取剂水的用量、二氯甲烷精馏塔(T2)的进料塔板位置、回流比R及理论板数等。通过萃取和精馏分离提纯了二氯甲烷废溶剂中的二氯甲烷,在工艺参数:萃取塔(T1)的理论塔板数为8,萃取剂水与二氯甲烷废溶剂质量比为0.5,二氯甲烷精馏塔(T2)理论塔板数为20,实际塔板数取30为佳,二氯甲烷溶剂从16~18块塔板进料,侧线采出二氯甲烷,回流比R为1.5时,塔顶产品二氯甲烷的质量分数≥99.70%,水分≤0.15%。  相似文献   

5.
以苯酚为萃取剂,采用萃取精馏对甲基环己烷(MCH)-甲苯(MB)物系进行分离,比较了常规萃取精馏工艺流程和差压热耦合萃取精馏工艺流程;采用Aspen Plus化工流程模拟软件对萃取精馏工艺分离MCH-MB物系进行了模拟计算,考察了差压热耦合萃取精馏工艺中萃取剂进料位置、原料进料位置、萃取剂与原料的摩尔比(溶剂比)、回流比和压缩比等参数对MCH产品纯度及工艺能耗的影响。模拟得到差压热耦合萃取精馏塔优化的操作参数:萃取剂进料位置为第6块理论板,原料进料位置为第4块理论板,溶剂比为2.95,回流比为6,压缩比为12。模拟结果表明,差压热耦合萃取精馏工艺节能效果显著,比常规萃取精馏工艺可节能74.97%,得到MCH产品的含量可达99.54%(x)。  相似文献   

6.
采用分隔壁萃取精馏塔,以乙二醇为溶剂将乙酸乙酯与异丙醇分离。基于装置的实际条件进行Aspen Plus模拟,考察溶剂比、溶剂温度、回流比等条件对其分离效果的影响,同时评估其经济性。模拟得到理想的操作条件为左回流比35、右回流比15、溶剂比4、溶剂温度90℃、混合物进料位置偏下。模拟结果表明,溶剂比和左侧回流比、左侧回流比和右侧回流比在操作上存在关联;其他条件一定时,溶剂温度存在唯一值,使得两侧产品的质量分数同时达到最优;分隔壁塔与常规流程相比在经济性上具有很大优势,可节能11%和降低25%设备费。用实验验证模拟结果时,右侧产品质量分数偏低,但可通过调节右侧回流比解决这个问题。最终达到左侧出料乙酸乙酯的质量分数为98.82%,右侧出料异丙醇的质量分数为97.88%。  相似文献   

7.
利用流程模拟与小试试验相结合的方法进行了以N,N-二甲基乙酰胺(DMAC)为溶剂的裂解C8馏分萃取精馏分离苯乙烯工艺研究。采用流程模拟考察了溶剂比、回流比、溶剂进料板位置和溶剂进料温度对苯乙烯产品纯度和收率的影响规律,结果表明:以DMAC为溶剂,在进料位置为第11~13块塔板、溶剂比为3.8~4.2、回流比为3.1~3.3、溶剂进料温度为45~50 ℃的条件下萃取精馏所得苯乙烯产品的纯度可达99.8%以上,苯乙烯回收率达98.5%以上。小试试验的各项数据与流程模拟结果吻合,证明流程模拟系统可靠、结果可信。与以环丁砜(SUL)为溶剂的萃取精馏工艺相比,该工艺塔釜操作温度更低,只有113 ℃,有利于减少苯乙烯聚合反应的发生,从而利于装置长周期稳定运行。  相似文献   

8.
针对甲乙酮生产装置的丁烯提浓工艺过程,提出了采用质量比为1的甲乙酮(MEK)-N-甲酰吗啉(NFM)混合溶剂萃取精馏分离C4馏分中烷烃和烯烃的方法。采用Aspen Plus流程模拟软件建立了平衡级数学模型,并考察了萃取精馏塔和汽提塔(溶剂回收塔)理论塔板数、进料位置、回流比、溶剂比等参数对分离性能的影响。模拟结果表明,萃取精馏塔最佳工艺条件为理论塔板数90块、原料和萃取剂进料位置分别在第43和第6块理论塔板、萃取剂与原料质量比(溶剂比)13、回流比1.5;汽提塔最佳工艺条件为理论塔板数35块、进料位置在第10~20块理论塔板、回流比3.0,所得丁烷产品中正丁烷和丁烯产品中总丁烯质量分数分别在97%和98%以上,总丁烯产率大于98%。  相似文献   

9.
对从C_9芳烃中分离均三甲苯进行了萃取精馏实验,并采用Aspen Plus流程模拟软件对萃取精馏塔进行了模拟计算。考察了回流比和溶剂比对分离均三甲苯的影响。实验结果表明,在理论塔板数为66块、回流比为20~25、萃取剂与进料的质量比为8的条件下,萃取精馏塔塔顶馏出物中均三甲苯的摩尔分数(x_(MES)为98.2%;x_(MES)的计算值与实验值的平均绝对偏差,在塔顶小于0.2%,在塔釜小于0.8%,在塔内液相小于2.0%,计算值与实验值吻合较好。建立的模拟方法可用于萃取精馏分离均三甲苯工艺的计算。  相似文献   

10.
加盐NMP法萃取精馏分离裂解碳五馏分   总被引:5,自引:5,他引:0  
利用Aspen Plus流程模拟软件,以含NaSCN的N-甲基吡咯烷酮(NMP)为萃取剂,对加盐NMP法萃取精馏分离裂解碳五馏分(C5)的过程进行模拟计算。考察了萃取剂中盐含量、萃取剂进塔温度、回流比及萃取剂与C5进料的质量比(溶剂比)等因素对分离效果的影响。模拟结果表明,当萃取剂中NaSCN质量分数为2.17%、萃取剂进塔温度为40℃时,第一萃取精馏塔需要的理论塔板数由未加盐时的80块减少到60块,溶剂比由3.45降到1.77;当第二萃取精馏塔在回流比为2,需要的理论板数由未加盐时的120块减少到92块,溶剂比由7.90降到7.76;采用加盐NMP法萃取精馏分离C5,异戊二烯、双环戊二烯和间戊二烯的纯度分别为99.90%,98.90%,90.30%,收率分别为98.86%,94.99%,98.93%,比传统的二甲基甲酰胺法和NMP法均有所提高。  相似文献   

11.
离子液体萃取精馏分离苯-环己烷物系   总被引:4,自引:2,他引:2  
在0.101 MPa 下,测定了不同离子液体对苯-环己烷物系相对挥发度的影响,研究了萃取剂比(萃取剂与原料液的体积比)对物系相对挥发度的影响以及离子液体加入速率和回流比对萃取精馏的影响,按实验确定的最佳工艺条件进行了重复实验。实验结果表明,离子液体作为萃取剂可以消除苯-环己烷物系的共沸点,提高苯-环己烷物系的相对挥发度。采用1-丁基-3-甲基咪唑六氟磷酸盐作为萃取剂,在萃取剂比为0.6、离子液体加入速率为6 mL/min、回流比为2.5的条件下,可得到纯度大于98.0%的环己烷。采用闪蒸的方法分离塔釜液,可回收苯和离子液体。  相似文献   

12.
以乙二醇为萃取剂,利用Aspen Plus软件中的Rad Frac模块和NRTL物性方法对叔丁醇-乙醇-水混合溶液的常规萃取和隔壁塔萃取分离工艺流程进行了模拟与优化,分别考察了各塔回流比、塔板数、原料进料位置、萃取剂用量及进料位置、侧线采出位置等因素对分离效果的影响。结果表明:隔壁塔萃取分离模拟工艺最佳优化条件中萃取塔T 1~T 4的理论塔板数依次为26,26,41,15块,进料塔板依次为第7,15,40,16块,回流比依次为2.5,1.3,2.7,2.0,T 2和T 3萃取剂进料位置均为第5块;2种工艺分离出的叔丁醇、乙醇、水的质量分数均超过95.00%,且隔壁塔萃取分离工艺比常规萃取分离工艺节能约65.03%。  相似文献   

13.
提出了采用隔离壁塔分离丙烯-丙烷的新工艺。采用Aspen Plus软件中的MultiFrac模型对其进行了模拟计算。在主塔理论板数55;副塔理论板数11的情况下,利用灵敏度分析模块分析了乙腈含水量、溶剂比、回流比、分配比对分离效果的影响。结果表明,隔离壁萃取精馏塔的适宜工艺条件为:乙腈中含水质量百分数14%;溶剂比5.2;主塔回流比8;分配比4∶1。与常规精馏和常规萃取精馏工艺进行了对比,完成相同的分离任务,该新工艺比常规精馏和常规萃取精馏工艺分别节能39%、20%。  相似文献   

14.
胡松  杨卫胜 《石油化工》2013,42(7):775-779
采用化工流程模拟软件Aspen Plus,以NRTL模型计算气液平衡,对萃取精馏分离环氧丙烷-水-甲醇混合物的过程进行模拟。选择1,2-丙二醇为萃取剂,考察了萃取剂与原料的质量比(溶剂比)、萃取精馏塔理论塔板数、粗环氧丙烷进料位置、萃取剂进料位置、萃取剂进料温度和回流比对分离效果的影响。模拟结果表明,在满足环氧丙烷产品纯度为99.99%(w)的条件下,优化的工艺条件为:溶剂比0.45,萃取精馏塔理论塔板数30块,粗环氧丙烷进料位置第20块塔板,萃取剂进料位置第5块塔板,萃取剂进料温度45℃,回流比0.14。在此工艺条件下,环氧丙烷回收率为99.99%,单位产品热负荷为0.936 GJ/t。  相似文献   

15.
研究了分隔壁精馏塔在分离苯和乙烯烷基化产物中的应用。采用Aspen Plus的Petlyuk模块对分隔壁精馏塔进行了模拟计算。首先采用等效三塔简捷模型计算分隔壁精馏塔的分壁段、主塔塔板数等参数,以此为基础,采用Petlyuk模型对分隔壁精馏塔进行严格计算,再采用Aspen的模型分析工具确定塔的最佳工艺参数。结果表明,对于乙烯和苯烷基化产物体系,采用分隔壁精馏塔分离的最佳参数为主塔理论塔板数58块、预分段理论塔板数25块,上、下端互联位置分别在15板、40板,进料位置在第10块板(预分段),侧线乙苯抽出位置在第24块板(基于主塔),主塔回流比13,互联物流液体流量500 kmol/h,气体流量950 kmol/h。在此参数下,计算得到的侧线采出乙苯质量分数为9992%,满足乙苯产品的纯度要求。  相似文献   

16.
叶青  钱春键  裘兆蓉 《石油化工》2007,36(11):1134-1138
采用隔壁精馏塔分离苯-甲苯-对二甲苯物系,用Aspen Plus软件模拟了隔壁精馏塔内温度分布及液相组成分布,考察了汽相和液相分配比对产品纯度的影响。对隔壁精馏塔模拟得到的优化操作条件为:隔壁精馏塔的理论板数为30块,侧线采出在第14块理论板,进料段为15块理论板,在进料段的第7块理论板进料,进料组成n(苯)∶n(甲苯)∶n(对二甲苯)为1∶3∶1,回流比为8.8,液相分配比为2.96,汽相分配比为0.83。在此条件下,各组分的摩尔分数大于98.5%,与实验结果基本吻合。当进料组成n(苯)∶n(甲苯)∶n(对二甲苯)为1∶3∶1时,采用隔壁精馏塔可比常规两塔流程节能27.18%。  相似文献   

17.
苯-环己烷分离渗透蒸发膜的研究进展与展望   总被引:1,自引:1,他引:0  
方志平  姜忠义 《石油化工》2005,34(9):885-890
由于苯和环己烷的相对挥发度非常接近,利用传统分离方法(如萃取精馏或共沸精馏)分离苯-环己烷混合物的分离效率较低。相比之下,利用膜的溶解和扩散选择性对苯-环己烷混合物进行分离的渗透蒸发技术具有优势。综述了渗透蒸发膜分离苯-环己烷混合物的研究进展,重点介绍了用于渗透蒸发技术的膜材料(特别是高分子膜材料),对渗透蒸发技术分离苯-环己烷混合物的研究前景进行了展望。  相似文献   

18.
采用热浸渍法引入晶种,通过二次生长在α-Al2O3陶瓷管的外表面上合成了NaY沸石膜。利用X射线衍射和扫描电子显微镜对沸石膜进行了表征。表征结果显示,合成的膜为NaY沸石膜,膜表面平整、均匀,晶体处于挛生状态,膜厚为10~15μm。将NaY沸石膜用于渗透汽化分离苯-环己烷,考察了操作条件对分离效果的影响。实验结果表明,NaY沸石膜对苯具有良好的选择性,对于苯质量分数为50%的苯-环己烷物系,操作温度为70℃时,分离因子可达13,渗透通量为0.082kg/(m2.h)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号