首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A low-firing microwave dielectric material in Li2O-ZnO-Nb2O5 system   总被引:1,自引:0,他引:1  
LiZnNbO4 ceramic was fabricated by the conventional solid state reaction method and its microwave dielectric properties were reported for the first time. The phase structure, microstructure, and sintering behavior were also investigated. The LiZnNbO4 ceramic could be well densified at around 950 °C and demonstrated high performance microwave dielectric properties with a low relative permittivity ~ 14.6, a high quality factor (resonant frequency/dielectric loss) ~ 47, 200 GHz (at 8.7 GHz), and a negative temperature coefficient of resonant frequency approzmiately −64.5 ppm/°C. The LiZnNbO4 ceramic is chemically compatible with Ag electrode material at its sintering temperature. It can be a promising microwave dielectric material for low-temperature co-fired ceramic technology.  相似文献   

2.
Ln2Mo3O12 (Ln = La, Nd) ceramics with a defect scheelite related structure were prepared via a solid state reaction method. The La2Mo3O12 ceramics sintered at 930 °C for 2 h exhibited a low dielectric permittivity of 10.1, a high quality factor (Qf value) of 60,000 GHz and a temperature coefficient of −80 ppm/°C at 12.7 GHz. The Nd2Mo3O12 ceramics sintered at 945 °C for 2 h possessed a dielectric permittivity of 8.2, a Qf value of 80,000 GHz, and a temperature coefficient of −60 ppm/°C at 15.8 GHz. This group of ceramics could be good candidates for microwave substrate applications.  相似文献   

3.
Low-loss Mg1.8Ti1.1O4 ceramics were prepared by the conventional solid-state route and their microwave dielectric properties were investigated for the first time. The forming of tetragonal-structured Mg1.8Ti1.1O4 main phase associated with a second phase MgTiO3 were confirmed by the X-ray diffraction patterns. However, the presence of the second phase would cause no significant variance in the dielectric properties of the specimen because the second phase properties are very similar to that of the main phase. A fine combination of microwave dielectric properties (?r ∼ 15.74, Q × f ∼ 141,000 GHz at 10.57 GHz, τf ∼ − 52.4 ppm/°C) was achieved for Mg1.8Ti1.1O4 ceramics sintered at 1450 °C for 4 h.  相似文献   

4.
The microwave dielectric properties of (1 − x)BaTi4O9-xBaZn2Ti4O11 ceramics were investigated by solid-state reaction technique for obtaining high-Q dielectric ceramics in BaO-ZnO-TiO2 system. And they were strongly determined by the chemical composition. As x was increased from 0.05 to 0.50, BaZn2Ti4O11 phase formed more and more. Therefore, the εr decreased from 37.3 to 32.8 and the Q × f values first raised from 45,300 GHz to 60,600 GHz (x = 0.30) and then started to decline to 58,700 GHz (x = 0.40), and the τf values varied gradually from 12 ppm/°C to − 13 ppm/°C. 0.7BaTi4O9-0.3BaZn2Ti4O11 ceramics sintered at 1240 °C for 3 h had excellent comprehensive microwave dielectric properties: εr = 34.2, Q × f = 60,600 GHz and τf = − 2 ppm/°C.  相似文献   

5.
The microwave dielectric properties and the microstructures of the (1-x)MgTiO3-x(Ca0.8Sr0.2)TiO3 ceramic system prepared by the conventional solid-state route were investigated. (Ca0.8Sr0.2)TiO3 was employed as a τf compensator and was added to MgTiO3 to achieve a temperature-stable material. Ilmenite-structured MgTiO3 and perovskite-structured (Ca0.8Sr0.2)TiO3 were coexisted and the two-phase system was confirmed by the X-ray diffraction patterns and the energy-dispersive X-ray analysis. Although the εr of the specimen could be boosted by increasing amount of (Ca0.8Sr0.2)TiO3, it would instead render a decrease in the Q × f. The τf value is strongly correlated to the compositions and can be controlled through the existing phases. In fact, τf could be adjusted to a near-zero value by mixing 94 mole% MgTiO3 and 6 mole% (Ca0.8Sr0.2)TiO3. A dielectric constant (εr) of 21.42, a high Q × f value of 83,700 GHz (at 9 GHz) and a temperature coefficient of resonant frequency (τf) of − 1.8 ppm/°C were obtained for 0.94MgTiO3-0.06(Ca0.8Sr0.2)TiO3 sintered at 1300 °C for 4 h. It is proposed as a low-loss and low-cost dielectric material for microwave and millimeter wave applications.  相似文献   

6.
The phases, microstructure and microwave dielectric properties of ZnTiNb2O8 ceramics with BaCu(B2O5) additions prepared by solid-state reaction method have been investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The pure ZnTiNb2O8 ceramic shows a high sintering temperature of about 1250 °C. However, it was found that the addition of BaCu(B2O5) lowered the sintering temperature of ZnTiNb2O8 ceramics from above 1250 °C to 950 °C due to the BCB liquid-phase. The results showed that the microwave dielectric properties were strongly dependent on densification, crystalline phases and grain size. Addition of 3 wt% BCB in ZnTiNb2O8 ceramics sintered at 950 °C afforded excellent dielectric properties of ?r = 32.56, Q × f = 20,100 GHz (f = 5.128 GHz) and τf = −64.87 ppm/°C. These represent very promising candidates for LTCC dielectric materials.  相似文献   

7.
In this study, we tried to lower the sintering temperature of Ba0.6Sr0.4TiO3 (BST) ceramics by several kinds of adding methods of Bi2O3, CuO and CuBi2O4 additives. The effects of different adding methods on the microstructures and the dielectric properties of BST ceramics have been studied. In the all additive systems, the single addition of CuBi2O4 was the most effective way for lowering the sintering temperature of BST. When CuBi2O4 of 0.6 mol% was mixed with starting BST powders and sintered at 1100 °C, the derived ceramics demonstrated dense microstructure with a low dielectric constant (? = 4240), low dielectric loss (tan δ = 0.0058), high tunability (Tun = 38.3%) and high Q value (Q = 251). It was noteworthy that the sintering temperature was significantly lowered by 350 °C compared with no-additive system, and the derived ceramics maintained the excellent microwave dielectric properties corresponding to pure BST.  相似文献   

8.
Microwave dielectric ceramics of Ba5Nb4−xVxO15 (x = 0-1) were prepared by a solid-state reaction method. Vanadium substitution can markedly lower the sintering temperature of Ba5Nb4O15 from 1450 to 1100 °C. The X-ray powder diffraction analysis reveals the multiphase nature of this system. A hexagonal-to-orthorhombic phase transition was also observed for the BaNb2O6 secondary phase. The microwave dielectric properties, such as τf, εr and Q × f value, decreased with increasing vanadium content for samples sintered at 1100 °C. There was an apparent increase in τf and Q × f value for samples (x ≥ 0.5) sintered at 1200 °C due to the hexagonal-to-orthorhombic phase transition of the BaNb2O6 phase. These results suggested that the microwave dielectric properties of multiphase ceramics strongly depended on the phase compositions and the phase transitions.  相似文献   

9.
The 0.83ZnAl2O4-0.17TiO2 (ZAT) ceramics were synthesized by solid state ceramic route. The effect of 27B2O3-35Bi2O3-6SiO2-32ZnO (BBSZ) glass on the microwave dielectric properties of ZAT was investigated. The crystal structure and the microstructure of the ceramic-glass composites were studied by X-ray diffraction and scanning electron microscopic techniques. The low frequency dielectric loss was measured at 1 MHz. The dielectric properties of the sintered samples were measured in the microwave frequency range by the resonance method. Addition of 0.2 wt% of BBSZ improved the dielectric properties with quality factor (Qu × f) > 120,000 GHz, temperature coefficient of resonant frequency (τf) = −7.3 ppm/°C and dielectric constant (?r) = 11.7. Addition of 10 wt% of BBSZ lowered the sintering temperature to about 950 °C with Qu × f > 10,000 GHz, ?r = 10 and τf = −23 ppm/°C. The reactivity of 10 wt% BBSZ added ZAT with silver was also studied. The results show that ZAT doped with suitable amount of BBSZ glass is a possible material for low-temperature co-fired ceramic (LTCC) application.  相似文献   

10.
The microwave characteristics and the microstructures of 0.88Al2O3-0.12TiO2 with various amounts of MgO-CaO-SiO2-Al2O3 (MCAS) glass sintered at different temperatures have been investigated. The sintering temperature can be lowered to 1300 °C by the addition of MCAS glass. The densities, dielectric constants (εr) and quality values (Q×f) of the MCAS-added 0.88Al2O3-0.12TiO2 ceramics decrease with the increase of MCAS glass content. The temperature coefficients of the resonant frequency (τf) are shifted to more negative values as the MCAS content or the sintering temperatures increase. The change of the crystalline phases of Al2TiO5 phase and rutile-TiO2 phase has profound effects on the microwave dielectric properties of the MCAS-added Al2O3-TiO2 ceramics. As sintered at 1250 °C, 0.88Al2O3-0.12TiO2 ceramics with 2 wt.% MCAS glass addition exists a εr value of 8.63, a Q×f value of 9578 and a τf value of +5 ppm/°C.  相似文献   

11.
The B2O3-doped 5Li2O–1Nb2O5–5TiO2 composite microwave dielectric ceramics prepared by conventional and low-temperature single-step reactive sintering processes were investigated in the study. Without any calcinations involved, the Nb2O5 mixture of Li2CO3 and TiO2 was pressed and sintered directly in the reactive sintering process. More uniform and finer grains could be obtained in the 5Li2O–1Nb2O5–5TiO2 ceramics by reactive sintering process, which could effectively save energy and manufacturing cost. And relatively good microwave dielectric properties of r = 41, Q × f = 9885 GHz and τf = 43.6 ppm/°C could be obtained for the 1 wt.% B2O3-doped ceramics reactively sintered at 900 °C.  相似文献   

12.
Ceramics in the system (1 − x)(Mg0.95Zn0.05)TiO3-x(Na0.5Nd0.5)TiO3 were prepared by the conventional mixed oxide route. It shows a two-phase system of an ilmenite structured (Mg0.95Zn0.05)TiO3 and a perovskite structured (Na0.5Nd0.5)TiO3, which were confirmed by XRD and EDX. In addition, (Mg0.95Zn0.05)Ti2O5 was identified as a second phase. It was also responsible for a rapid drop in the Q × f value. The temperature coefficient of resonant frequency was a function of compositional ratio. Specimen with x = 0.16 possessed an excellent combination of microwave dielectric properties: εr ~ 24.27, Q × f ~ 82,000 GHz (at 9 GHz) and τf ~ 0 ppm/°C.  相似文献   

13.
We demonstrate the correlation between sintering behavior and microstructural observations in low-temperature sintered, LaNbO4 microwave ceramics. Small CuO additions to LaNbO4 significantly lowered the sintering temperature from 1250 to 950 °C. To elucidate the sintering mechanism, the internal microstructure of the sample manipulated by a focused ion beam (FIB) was investigated using transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). LaNbO4 with 3 wt% CuO sintered at 950 °C for 2 h possessed the following excellent microwave dielectric properties: a quality factor (Qxf) of 49,000 GHz, relative dielectric constant (?r) of 19.5, and temperature coefficient of resonant frequency (τf) of 1 ppm/°C. The ferroelastic phase transformation was also investigated using in situ X-ray diffraction (XRD) to explain the variation of τf in low-temperature sintered LaNbO4 as a function of CuO content.  相似文献   

14.
A polycrystalline sample of LiCa2V5O15 (LCV) was prepared using a mixed oxide method at low temperature (i.e., at 630 °C). X-ray structural analysis shows the single-phase formation of the compound in the orthorhombic crystal system at room temperature. A study on the surface morphology of the compound showed uniform grain distribution on the surface and in the bulk of the sample with less porosity. A dielectric anomaly suggests that the compound has a transition temperature at 274 °C. The activation energy, calculated from the temperature dependence of ac conductivity (dielectric data), of the compound was found to be 0.67 eV at 10 kHz. The nature of the variation of conductivity and value of activation energy in different regions, suggest that the conduction process is of mixed type (i.e., ionic-polaronic and space charge generated from the oxygen ion vacancies).  相似文献   

15.
The effects of sintering aids on the microstructures and microwave dielectric properties of SmAlO3 ceramics were investigated. CuO and ZnO were selected as sintering aids to lower the sintering temperature of SmAlO3 ceramics. With the additions, the sintering temperature of SmAlO3 can be effectively reduced from 1650 to 1430°C. The crystalline phase exhibited no phase differences at low addition level while Sm4Al2O9 appeared as a second phase as the doping level was over 0.5 wt.%. In spite of the additions, the dielectric constants showed no significant change and ranged 19-21. However, the quality factor Q×f was strongly dependent upon the type and amount of additions. The Q×f values of 51,000 and 41,000 GHz could be obtained at 1430°C with 0.25 wt.% CuO and ZnO additions, respectively. The temperature coefficients depended on the additions and varied from −40 to −65 ppm/°C. Results of X-ray diffractions, EDS analysis and scanning electron microscopy were also presented.  相似文献   

16.
Lithium metasilicate (Li2SiO3) ceramic was prepared via solid-state reaction technique. X-ray diffraction pattern showed that Li2SiO3 ceramic is orthorhombic. Microstructural analysis by field emission scanning electron microscopy (FE-SEM) shows that the compound has well defined grains separated by grain boundaries. Dielectric studies of the compound shows a strong frequency dispersion of permittivity in the low frequency region followed by a nearly frequency independent behavior in the high frequency region. The dielectric permittivity and dielectric loss at 5 MHz are 25.66 and 0.033 at room temperature. The activation energy (Ea) of the sample calculated from the plot of ac conductivity versus inverse of absolute temperature was found to be less than 1 eV. The smaller activation energy of the compound within moderate temperature range suggests the presence of singly ionized oxygen vacancies in the conduction process.  相似文献   

17.
Phase-singular Mg4Al2Ti9O25 ceramics with the pseudobrookite structure suitable for microwave devices such as antenna substrate have been prepared by gel-carbonate method with the dielectric permittivity of 24.7 (at 2-8 GHz), Q-values > 30,000 and temperature coefficients in permittivity (TCK) of less than + 17 ppm K− 1. The dielectric characteristics are accountable in terms of ordering in the cation sub-lattice.  相似文献   

18.
The effects of CuO-V2O5 addition on the sintering temperature and microwave dielectric properties of ZnO-Nb2O5-TiO2-SnO2 were investigated. The CuO-V2O5 addition lowered the sintering temperature of ZnO-Nb2O5-TiO2-SnO2 ceramics effectively from 1150 to 860 °C due to the liquid-phase effect of Cu2V2O7 and Cu3(VO4)2, as observed by XRD. The microwave dielectric properties were found to strongly correlate with the sintering temperature and the amount of CuO-V2O5 addition. The maximum Qf values decreased with increasing CuO-V2O5 content, due to the formation of the second phase, Cu3(VO4)2 and CuNbO3. Zero τf value can be obtained by properly adjusting the sintering temperature. At 860 °C, ZnO-Nb2O5-TiO2-SnO2 ceramics with 1.5 wt.% CuO-V2O5 gave excellent microwave dielectric properties: ?r = 42.3, Qf = 9000 GHz and τf = 8 ppm/°C.  相似文献   

19.
For pulsed power applications, bulk Na2O-BaO-PbO-Nb2O5-SiO2 glass-ceramic dielectrics in considerable size (about 150 × 60 × 4 mm3) were prepared via controlled-crystallization route. The discharge properties (mainly the discharge speed dI/dt and the duration time τ) of the dielectrics were investigated. The results show that the capability of charge or energy storage in the bulk dielectrics is relatively lower than that of anticipation based on smaller specimen, due to a serious drop of breakdown strength (BDS) of the bulk dielectrics. Several electrode structures were designed and applied in the measurement circuit to enhance the BDS of the bulk dielectrics. Among which, a bowl-like electrode structure was proved to reduce electrode edge effect most effectively in the BDS measurement and result in the improved dI/dt and τ.  相似文献   

20.
The microwave dielectric properties and the microstructures of MgNb2O6 ceramics with CuO additions (1-4 wt.%) prepared with conventional solid-state route have been investigated. The sintered samples exhibit excellent microwave dielectric properties, which depend upon the liquid phase and the sintering temperature. It is found that MgNb2O6 ceramics can be sintered at 1140 °C due to the liquid phase effect of CuO addition. At 1170 °C, MgNb2O6 ceramics with 2 wt.% CuO addition possesses a dielectric constant (εr) of 19.9, a Q×f value of 110,000 (at 10 GHz) and a temperature coefficient of resonant frequency (τf) of −44 ppm/°C. The CuO-doped MgNb2O6 ceramics can find applications in microwave devices requiring low sintering temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号