首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V-doped titania layers with a novel morphology and a rough surface were grown the via micro arc oxidation process in the electrolytes consisting of sodium vanadate under various voltages. Morphological investigations, performed by SEM, revealed that the layers had a sheet-like structure whose average thickness was less than 100 nm depending on the applied voltage. Our XRD and XPS results showed that the layers consisted of anatase, rutile, and vanadia phases with a varying fraction depending on the voltage. Hydrophilicity of the layers was also studied by measuring the water contact angle on their surfaces under ultraviolet and visible illuminations. The layer synthesized under the voltage of 450 V exhibited the highest hydrophilicity.  相似文献   

2.
Synthesis and characterization of P-doped TiO2 nanotubes   总被引:1,自引:0,他引:1  
Titanium dioxide (TiO2) doped with phosphorus (P) was synthesized by anodization of Ti in the mixed acid electrolyte of H3PO4 and HF and characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectrum. The morphology greatly depends on the applied voltage. The as-formed nanotubes under the optimized condition, at 20 V for 2 h, are highly ordered with ~ 200 nm in length and the average tube diameter is about 100 nm. By annealing the initial samples at different temperatures, the importance of the crystalline nature is confirmed. Significantly, the peak positions of anatase in XRD patterns shifts to lower diffraction angles with an increase in the amount of H3PO4 ion. A remarkable red shift of the absorption edge has been observed for the sample formed in the electrolyte of HF and H3PO4, which is related to the introduction of P5+ into TiO2 crystallization and the possible impurity energy level formed in the TiO2 band gap. The presence of P 2p state in XPS spectrum can further confirm the P5+ which can replace a part of Ti4+ has been introduced into TiO2 crystallization. The present convenient synthesis technique can be considered to the composition of other doped oxide materials.  相似文献   

3.
Zirconia-alumina layers, with a pores size of 40-300 nm, were fabricated via micro arc oxidation method for the first time. The layers were grown under alternative current in the electrolytes of ZrOCl2 salt. They consisted of α-Al2O3, γ-Al2O3, monoclinic ZrO2, tetragonal ZrO2. Increasing the voltage resulted in higher zirconium concentrations in the layers. A porous structure was obtained when the layers were grown under intermediate voltages. Microcracks were observed to appear when the applied voltage increased. Finally, a formation mechanism was proposed with emphasis on the chemical and the electrochemical foundations.  相似文献   

4.
The field-emission characteristics of the carbon-doped TiO2 nanotube arrays (TNAs), which can be obtained by a heat treatment of the as-fabricated TNAs under a continuous argon and acetylene flux, were investigated. The morphology, crystalline structure, and composition of the as-grown specimens were characterized by the use of field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. It was found that the samples' turn-on electric field is reduced from 21.9 to 5.0 V/μm and the field-emission current density rapidly reaches about 9.0 mA/cm2 at 11.8 V/μm after carbon doping. The dramatically improved field-emission characteristics would be mainly attributed to the reduced work function and the enhanced conductivity due to the carbon doping into TNAs.  相似文献   

5.
A fibre optic experimental arrangement was used to determine the thermo-optic coefficient (dn/dT) of electron beam deposited titanium dioxide coatings on the cleaved end faces of multimode optical fibres for a wavelength range between 600 and 1050 nm. The temperature-induced change in the index of refraction (n) and extinction coefficient (k) were successfully determined from reflection spectra. Measurements of n and k at various wavelengths for different temperatures enabled the determination of dn/dT and dk/dT. It was found that dn/dT takes different values at different temperature ranges. For example, at 800 nm, dn/dT was (−1.77±0.7)×10−4 K−1, between 18°C and 120°C, and took a value of (−3.04±0.7)×10−4 K−1 between 220°C and 325°C.  相似文献   

6.
Multifunctional WO3 − x-TiO2 composite thin films have been prepared by sol-gel synthesis and shown to be good visible light photocatalysts whilst retaining a desirable underlying blue colouration. The WO3 − x-TiO2 composite thin films were further enhanced using silver nanoparticles synthesised in-situ on the surface from the photo-degradation of silver nitrate solution. Thin films were characterised using X-ray diffraction, Raman, Scanning electron microscopy and UV-visible spectroscopy and shown to photo degrade stearic acid, using white light λ = 420-800 nm.  相似文献   

7.
This study examined the synthesis of carbon-doped titanium dioxide using TiCl4 and CO2 as titanium and carbon sources, respectively, by thermal plasma at atmospheric pressure. The effect of the CO2 gas flow rate on the preparation of TiO2 was investigated. The results showed that the decomposition rate of CO2 was 90% at a CO2 gas flow rate of 1 L/min. When TiCl4 was added to produce TiO2, the decomposition rate of CO2 reached 95% at a CO2 gas flow rate of 1 L/min. The resulting powders contained mixed anatase and rutile phases with particle sizes ranging from 20 to 50 nm. The carbon in the CO2 acted as a dopant to produce the carbon-doped TiO2. The prepared samples were mainly characterized by X-ray diffraction, X-ray photoelectron spectroscopy, specific surface area measurements and ultraviolet-visible spectroscopy.  相似文献   

8.
Fe3+-doped nanostructured TiO2 thin films with antibacterial activity were prepared on soda–lime–silica glass slides by using sol–gel technology. Water containing Escherichia coli K-12 with TiO2 thin films in was exposed to low intensity fluorescent light and antibacterial efficiency was evaluated with spread plate techniques. The films are porous and have anatase phase. Iron ions increased luminous energy utilization as the absorption edge of the Fe3+-doped film has a red shift compared to that of the pure TiO2 film in the UV–VIS absorption spectrum. The bacterial removal efficiency reached 95% at the optimum concentration of iron ion (about 0.5% (mol)) after 120 min irradiation. The antibacterial behavior of the doped TiO2 films was explicitly observed using scanning electron microscopy and cell wall damage was found.  相似文献   

9.
Cu/TiO2 composite films were prepared at low temperature on glass substrates by a photodeposition method. Films were deposited by irradiating the substrate while in contact with an aqueous TiO2 suspension containing copper(II) nitrate and ethanol. Cu/TiO2 composite films of 500 nm in thickness were deposited at room temperature after a short irradiation time (15 min) with a 125 W mercury vapour lamp. According to scanning electron microscopy observations, the obtained films were homogeneous and porous. Energy dispersive X-ray spectroscopy analysis revealed a 3:1 Cu:Ti atomic ratio. Grazing angle X-ray diffraction analysis showed that the films contained Cu and TiO2 as major components and Cu2O as a minor component. Heat treatment at 400 °C in air for a period of 3 h transformed the initial material into a CuO/TiO2 composite, improved the adhesion to the substrate and favoured a more regular distribution of copper oxide according to backscattering micrographs.  相似文献   

10.
The photoreduction of CO2 into methane provides a carbon-neutral energy alternative to fossil fuels, but its feasibility requires improvements in the photo-efficiency of materials tailored to this reaction. We hypothesize that mixed phase TiO2 nano-materials with high interfacial densities are extremely active photocatalysts well suited to solar fuel production by reducing CO2 to methane and shifting to visible light response. Mixed phase TiO2 films were synthesized by direct current (DC) magnetron sputtering and characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM) and transmission electron microscope (TEM). Bundles of anatase-rutile nano-columns having high densities of two kinds of interfaces (those among the bundles and those between the columns) are fabricated. Films sputtered at a low deposition angle showed the highest methane yield, compared to TiO2 fabricated under other sputtering conditions and commercial standard Degussa P25 under UV irradiation. The yield of methane could be significantly increased (~ 12% CO2 conversion) by increasing the CO2 to water ratio and temperature (< 100 °C) as a combined effect. These films also displayed a light response strongly shifted into the visible range. This is explained by the creation of non-stoichiometric titania films having unique features that we can potentially tailor to the solar energy applications.  相似文献   

11.
在真空炉中(30~40 Pa)1273 K下,将物料放入螺纹密封的石墨坩埚中进行不同时间下的还原反应。本文采用热力学分析及X射线衍射、扫描电子显微镜及能量弥散X射线谱等方法与手段,系统研究了金属钙(Ca)与反应器中的氧气(O2)、氮气(N2)、二氧化钛(TiO2)的反应和还原时间及还原产物的预处理对得到金属钛粉(Ti)的影响。通过热力学研究,在温度低于钙的熔点(1115 K)时,密封容器内的O2与Ca的反应及N2与Ca的反应满足反应发生的热力学条件。当温度达到1273K时,Ca的饱和蒸气压p*≈p系,有利于整个气固反应进行。实验研究表明,在还原反应发生前,反应器内的O2,N2与Ca反应完全。将在1273 K下还原时间为4 h得到的还原产物在酸洗前真空挥发处理还原产物表面大量的Ca时,金属单质Ti再次被氧化成低价氧化物,最终得不到金属Ti粉。将反应时间延长至6 h时,酸洗过滤后得到形状不规则、纯度达到98.64%的Ti粉。  相似文献   

12.
The conductivity of nanometer TiO2 thin films was presented in this paper. The dependence of the conductivity of TiO2 thin films on the thickness of the film and the substrate material were educed. The TiO2 films were deposited by reactive magnetron sputtering of a Ti targets in an Ar+O2 mixture in a conventional sputtering reactor. The thickness of the films deposited on Ti varied in the range from 15 to 225 nm. The resistivity of the films was measured at room temperature in the air. It was found that the conductivity of TiO2 thin films varies in the range from conductor, semiconductor to nonconductor. This was attributed to electrons transfer at the interface between the TiO2 and substrates, and the depth of electrons transfer was determined by the difference of work function.  相似文献   

13.
A novel photocatalyst WO3/TiO2 nanocomposite was prepared through a hydrothermal method by using cetyltrimethylammonium bromide (CTAB) as surfactant. The obtained WO3/TiO2 was characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM) and diffused reflectance spectroscopy (DRS). Photocatalytic experiments indicate that the nanocomposites show much higher photoactivity than that of pure TiO2 in the photodegradation reaction of Rhodamine B (RhB). The increased photoactivity of WO3/TO2 may be attributed to the improvement of the light absorption properties and the slow down of the recombination between the photoexcited electrons and holes during the photoreaction.  相似文献   

14.
The gel-derived TiO2 and P-TiO2 transparent films coated on fused-SiO2 substrates were prepared using a spin-coating technique. Effects of phosphorus dopants and calcination temperature on crystal structure, crystallite size, microstructure, light transmittance and photocatalytic activity of the films were investigated. By introducing P atoms to Ti-O framework, the growth of anatase crystallites was hindered and the crystal structure of anatase-TiO2 could withstand temperature up to 900 °C. The photocatalytic activities of the prepared films were characterized using the characteristic time constant (τ) for the photocatalytic reaction. The titania film with a smaller τ value possesses a higher photocatalytic ability. After exposing to 365-nm UV light for 12 h, the P-TiO2 films calcined between 600 °C and 900 °C can photocatalytically decomposed ≥ 84 mol% of the methylene blue in water with corresponding τ ≤ 7.1 h, which were better than the pure TiO2 films prepared at the same calcination temperature.  相似文献   

15.
Doped dandelion-like TiO2 microspheres assembled nanorods were synthesized from rutile powders using either urea or thiourea leading to N- or S-doped TiO2. The rutile particles reacted in concentrated NaOH and urea (or thiourea) solution under hydrothermal conditions (200 °C for 24 h), yielding N- and S-doped TiO2 nanodandelions with diameters ranging from 0.7 to 1.3 μm. SEM, HRTEM, X-ray diffraction (XRD) and IR spectra were used to characterize the synthesis of powders. The results show that concentrated urea (or thiourea) and NaOH are used as additives that help in the construction of the dandelion-like structures. The fabricated nanostructures exhibit high photocatalytic activity in the photodegradation of aqueous Methylene Blue solution.  相似文献   

16.
Electrochromic devices were elaborated based on two complementary electrodes made of a nanocrystalline metal oxide thin film deposited on conducting glass. The first electrode holds a 5 μm thick nanocrystalline TiO2 film derivatized by a monolayer of a phosphonated triarylamine which can be rapidly oxidized by electron transfer to the conducting support followed by charge percolation inside the monolayer. The oxidation in accompanied by a blue coloration due to the absorption band at 730 nm of the stable triarylamminum radical cation. The second electrode bears a 0.2 μm thick nanocrystalline WO3 film which turns from colorless to blue by reduction and lithium ion insertion. The former electrode reaches an absorbance of at least 3 between 700 and 730 nm after full oxidation (16 mC/cm2) at 1.0 V vs. NHE while for the second, complete reduction at −1.3 V (74 mC/cm2) leads to A=2.4 at 774 nm. An electrochromic device comprising both electrodes separated by an electrolytic solution of 0.1 Li+ in 4,7-dioxaoctanitrile reaches an absorbance of 2.2 at 700 nm, 4 s after a voltage step to 1.5 V. The system was shown to sustain at least 14400 coloration-discoloration cycles without degradation.  相似文献   

17.
In this study, TiO2-SiO2 nanocomposite films with different amounts of SiO2 were prepared by sol-gel process and were coated onto stainless steel 316L. The effect of addition of various amount of SiO2 in the precursor solution on the photocatalysis, photo-generated hydrophilicity and self-cleaning property of TiO2 thin films was investigated by X-ray diffraction, Fourier transform infrared spectroscopy, water contact angle measurements and UV spectroscopy. In the tested ranges of SiO2 content and sintering temperature, the highest photocatalytic activity and self-cleaning property were observed in the 15 mol% SiO2 sample sintered at 750 °C. Addition of less than 30 mol% SiO2 had a suppressive effect on the transformation of anatase to rutile and on the crystal growth of anatase in the sintering heat treatment. Phase separation occurred in the composite films for SiO2 content of 30 mol% or more.  相似文献   

18.
Nanocrystalline TiO2(B) powder was obtained by the hydrolysis of an ionic liquid like titania precursor (the triethylammonium salt of hexafluorotitanate) induced by the addition of boric acid in the presence of dopamine. The entire synthetic procedure was carried out at ambient pressure and low temperature (85 °C). X-ray diffraction, high resolution transmission electron microscopy and selected area electron diffraction characterization techniques confirmed the formation of the TiO2(B) phase. Moreover, Raman spectroscopy indicated that TiO2(B) was the major component, although it also revealed the presence of anatase as a minor component (< 10%). The as-prepared material has a mesoporous architecture with high specific surface area (235 m2 g− 1).  相似文献   

19.
利用大气压低温等离子体射流技术,以空气为放电气体,四氯化钛为钛源,在玻璃载玻片基底上制备了二氧化钛薄膜。利用扫描电镜及椭圆偏振仪分析测量了薄膜的表面形貌与沉积速率。利用紫外光照射硬脂酸分解速率评价所制备薄膜的光催化活性,结果显示在同一放电输入功率及气体流量条件下,四氯化钛前驱体引入位置距射流枪枪口越近,所制备的二氧化钛薄膜光催化性能越高。在同一反应位置时,放电输入功率的增加有助于提高二氧化钛薄膜的光催化活性。  相似文献   

20.
Anatase-structured TiO2 films were deposited on a commercial fluorinated polymer (FEP) with a treated surface, by means of a sol-gel dip-coating technique. Two different curing temperatures were investigated and the film microstructures were characterized by X-ray diffraction, atomic force microscopy and scanning electron microscopy analyses. The prepared samples presented very high performances in terms of photocatalytic activities, analyzed by the degradation of an organic dye in a liquid medium, and of bactericidal activities, tested on Staphylococcus aureus (S. aureus, a Gram positive bacterium) and Escherichia coli (E. coli, a Gram negative bacterium).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号