首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic properties of sintered Eu0.7Sm0.3Ba2Cu3O7– were investigated both in dc and ac magnetic fields. The dc response reflects the interplay between the rare earth ion paramagnetic and the superconducting charge carrier subsystems, respectively. The harmonic susceptibilities exhibit special features: the second harmonic is anomalously high and the third harmonic in zero dc-field has reversed temperature dependence with respect to the theoretical models. The magnetic relaxation at low fields is monotonous and occurs as a two-stage relaxation, each stage obeying logarithmical time dependence with different rates. At high fields, the relaxation is nonmonotonous with a peak at intermediate time suggesting a temporary re-entrance of irreversibility when the flux-line density increases in the center of the sample because of the redistribution of the vortices toward that region.  相似文献   

2.
Refractive index and molar refraction of Li2O–, Na2O–, CaO–, and BaO–Ga2O3–SiO2 glasses have been used to test the validity of a structural model of silicate glasses containing Ga2O3 glasses. Ga2O3 enters these types of glass in a similar manner as Al2O3. It is assumed that, for (SiO2/Ga2O3) >1 and (Ga2O3/R2O) ≤1, Ga2O3 associates primarily with modifier oxides to form GaO4 units. The rest of modifier oxide forms silicate units with non-bridging oxygen ions. Silicate structural units have the same factors as found for binary alkali- and alkaline earth silicate glasses. Differences between experimental and model values suggest another structure for (Ga2O3/SiO2) ≥1.  相似文献   

3.
Polycrystalline samples La1−x Ca x MnO3 (x=0.17, 0.15, 0.10) and La0.7Sr0.3MnO3 were prepared in order to investigate the Griffiths-like features induced by disorder compared with their counterpart single crystals. The magnetization data exhibit the traditional transition from ferromagnetic phase to paramagnetic phase. From the temperature dependence of inverse susceptibility, it can be testified that the Griffiths-like features still exist in as-prepared Ca doped samples, while non-Griffiths-like features exist in La0.7Sr0.3MnO3. All these samples, however, exhibit the large effective spins resulting from formation of the short-order ferromagnetic clusters. The O K-edge X-ray absorption spectra indicate the Jahn–Teller (J-T) distortions are definitely present due to the J-T ion Mn3+, which indicate that static J-T distortion is not a sufficient condition for the existence of Griffiths phase in Sr-doped system. And, the size of J-T distortion is a little larger in polycrystalline La0.7Sr0.3MnO3 than that in polycrystalline samples La1−x Ca x MnO3 (x=0.17, 0.15, 0.10), revealed by X-ray diffraction parameters and extended X-ray fine structure absorption data of Mn K-edge. It also testifies that the disorder in La0.7Sr0.3MnO3 caused by both chemical doping and J-T distortions is lower than that in polycrystalline samples La1−x Ca x MnO3, which may be the reason of non-Griffiths-like phase existing in La0.7Sr0.3MnO3 samples.  相似文献   

4.
Polarized Raman and optical spectra for the quasi one-dimensional metallic vanadate -Na0.33V2O3 are reported for various temperatures. The spectra are discussed in the light of the sodium and charge ordering transitions occurring in this material, and demonstrate the presence of strong electron–phonon coupling.  相似文献   

5.
Kapton? FN and Teflon? FEP (fluorinated ethylene propylene) polymers are resistant to most chemical solvents, heat sealable, and have low moisture uptake, which make them attractive as packaging materials for electronics and implantable devices. Kapton? FN/Ti and Teflon? FEP/Ti microjoints were fabricated by using focused infrared laser irradiation. Laser-bonded samples were tested with a micro-testing machine under lap shear load and the bond strength was determined. The bond strength for the Kapton? FN/Ti and Teflon? FEP/Ti systems was found to be 3.32 and 8.48 N/mm2, respectively. The failure mode of the mechanically tested samples was studied by using optical microscopy and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. Chemical interactions during laser bonding of Kapton? FN to titanium were studied by using X-ray photoelectron spectroscopy (XPS). The XPS results give evidence for the formation of Ti–F bonds in the interfacial region.  相似文献   

6.
In this article, the magneto-transport features of 57Fe isotope (1%) doped SrCoO3 (referred to as SrCo0.99 57Fe0.01O3) perovskite compound have been investigated. The compound crystallized in cubic symmetry undergoes ferromagnetic transition around ∼270 K. The isothermal magnetization data collected at low temperature (1.8 K) indicates a characteristic of soft ferromagnet with saturation moment, M s∼1.81 μ B/Co. Interestingly, the electrical resistivity, ρ(T), measurements indicate semiconducting properties while metallic nature is seen for the pristine compound. The SrCo0.99 57Fe0.01O3 sample shows temperature and field dependence of magnetoresistance, MR, around 1.5%, which is rather smaller than of the pristine perovskite. The second part of the present work reports the attempt to dope Cd on Sr-site in the perovskite structure, Sr1−x Cd x CoO3, under extreme conditions. A minimum amount of about x=0.05, 0.1 is tested for solid solution in the Sr1−x Cd x CoO3 structure. However, the structural data indicate that Cd is not fully doped in the matrix for x=0.05, 0.1 samples; some of the CdO is intact as an impurity and it did not show major impact on the physical properties of the samples. The ρ(T) data reveal metallic nature for both x=0.05 and 0.1 samples with relatively low resistivity at low temperature regions, and they exhibit −MR ∼4% around ∼250 K. For x=0.05 the molar magnetic susceptibility of the sample shows ferromagnetic transition at T c=244 K, whereas x=0.1 sample exhibits ferromagnetism at T c=264 K. The effective Bohr magnetron parameter, p eff, determined for x=0.05 and 0.1 samples is found to be 3.10 μ B/Co and 3.25 μ B/Co, respectively, and these data suggest intermediate spin state for Co4+ ion for both the samples. The M(H) data for both the samples reveal soft ferromagnetism. The M s of x=0.05 reaches 1.9 μ B/Co and of x=0.1 reaches 1.86 μ B/Co at 1.8 K and 70 kOe conditions.  相似文献   

7.
Lead-free piezoelectric ceramics (1 − x)Bi0.5(Na0.84K0.16)0.5TiO3xBa0.77Ca0.23TiO3 (BNKT–xBCT, x = 0–0.04) were synthesized by conventional solid-state reaction method. The piezoelectric, dielectric, and ferroelectric characteristics of the ceramics are investigated and discussed. The XRD results show that Ba0.77Ca0.23TiO3 (BCT) has diffused into Bi0.5(Na0.84K0.16)0.5TiO3 (BNKT) lattices to form a new solid solution. It is shown that moderate additive of BCT (x ≤ 0.025) in BNKT–xBCT ceramics can enhance their piezoelectric and ferroelectric properties. Three dielectric anomalies are observed in BNKT–xBCT (x ≤ 0.03) ceramics. The piezoelectric measurements and P–E hysteresis loops reveal that BNKT–0.025BCT ceramic has the highest piezoelectric performance and strongest ferroelectricity in all the samples. Piezoelectric constants d 33, k p, and k t of 175 pC/N, 29.1, and 54% are, respectively, achieved. Remnant polarization P r and coercive field E c reach 28.3 μC/cm2 and 24.2 kV/cm, respectively.  相似文献   

8.
The magnetic susceptibility of NdCo1 − x Ga x O3 (x = 0, 0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 1) has been measured at temperatures from 80 to 950 K. The effective magnetic moments (μeff) due to the magnetic moments of the Co3+ and Nd3+ ions have been determined in the temperature ranges of Curie-Weiss behavior, 130–370 and 600–940 K, and have then been used, together with the effective magnetic moment of Nd3+ (3.62μB or 4.20μB), to evaluate the effective magnetic moment of Co3+ in NdCo1 − x Ga x O3. For the solid solutions with < 2.83μB, we have determined the fractions of intermediate-and low-spin Co3+ ions. In the range 2.83μB < < 4.90μB, we have determined the fraction of high-spin Co3+ ions. The results indicate that, in the temperature range 130–370 K, the Co3+ ions in NdCo1 − x Ga x O3 with x = 0, 0.5, 0.8, and 0.9 are in the intermediate-and high-spin states, and the fraction of high-spin Co3+ ions gradually increases from 10% at x = 0 to 67% at x = 0.9. In the solid solutions with x = 0.1, 0.2, 0.3, and 0.7, more than half of the Co3+ ions are in the low-spin state, and the rest are in the intermediate-spin state. In the temperature range 600–940 K, the Nd3+ ions are in the ground and excited states, with theoretically predicted of of 3.62μB and 5.52μB, respectively. Because of the significant uncertainty in in this temperature range, has been determined less accurately compared to the range 130–370 K. Original Russian Text ? N.N. Lubinskii, L.A. Bashkirov, A.I. Galyas, S.V. Shevchenko, G.S. Petrov, I.M. Sirota, 2008, published in Neorganicheskie Materialy, 2008, Vol. 44, No. 9, pp. 1137–1143.  相似文献   

9.
The microstructure, dielectric and magnetic properties of bulk and layered CoFe2O4–Pb(Fe1/2Ta1/2)O3 composites were studied. Ceramic samples based on previously mixed ferrite and relaxor powders were sintered at 950 °C. Ferrite and relaxor green tapes 150 μm thick were prepared by tape casting, then cut, stacked alternately, laminated and co-sintered at 950 °C. High and broad maxima of dielectric permittivity reaching 2000 at 1 kHz were found for bulk CoFe2O4–Pb(Fe1/2Ta1/2)O3 ceramic. Measurements of the magnetization of the investigated composites as a function of magnetic field and temperature exhibited behavior typical of hard magnetic materials. The layered composites showed lower coercivity, higher saturation magnetization and a higher magnetoelectric coefficient than the bulk ceramics. Distinct changes in field- and zero field-cooled magnetization curves at −200 °C could be ascribed to the antiferromagnetic transition of the PFT relaxor phase. Multilayer CoFe2O4–Pb(Fe1/2Ta1/2)O3 composites exhibited a magnetoelectric coefficient of 200 mV/(cm Oe) at a frequency of the modulation magnetic field equal to 5 kHz.  相似文献   

10.
YCa4O(BO3)3 crystal having various concentration of Ce ions were synthesized by solid-state diffusion technique. XRD pattern of the sample confirmed the formation of the sample. Thermoluminescence (TL) and lyoluminescence (LL) of the γ-ray-irradiated sample were recorded. Two distinct peaks around 160 and 277 °C were observed in TL glow curves. TL intensity increased with increasing dopant concentration up to 2 mol%. A single sharp peak was observed in the LL glow curve of the sample. It was found that both TL and LL increased almost linearly with γ-ray doses up to 1.5 kGy. Photoluminescence (PL) of the sample was recorded to find the role of rare earth ion doped in YCa4O(BO3)3. PL emission spectrum showed two peaks lying very close to each other around 390 nm which are characteristics of 5d → 4f transition of Ce3+ ions. When LL of samples was recorded after removing the TL peaks it did not show any emission. This indicates that emission centres responsible for TL are also responsible for LL.  相似文献   

11.
Ce0.95Zr0.05O2 nanopowders have been prepared by a standard Pechini-type sol–gel process and by using polymethyl methacrylate (PMMA) colloidal crystals as template. The effects of these different synthesis routes, on the structure and microstructural features of the nanopowders, were evaluated by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and specific surface area measurements. For both preparation routes, the XRD analysis has shown that a cubic fluorite structure is formed with a crystallite size of ∼45–50 nm. The SEM images indicate that the powder obtained by the sol–gel Pechini-type process, is constituted by aggregated nanoparticles with relatively uniform shape and size, whereas the powder synthesized as inverse opal exhibits the formation of macropores with a mean size of ∼130 nm. The specific surface areas of the powder samples obtained by the Pechini-type sol–gel and inverse opal methods are ∼56 m2 g−1 and ∼90 m2 g−1 respectively. Additionally, the thermoluminescence (TL) signal of the synthetized samples has been measured in order to examine its potential application in the field of dosimetry of ionizing radiations.  相似文献   

12.
Lead-free piezoelectric ceramics (1 − x − y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBiCoO3 (x = 0.12–0.24, y = 0–0.04) have been fabricated by a conventional solid-state reaction method, and their structure and electrical properties have been investigated. The XRD analysis shows that samples with y ≤ 0.03 exhibit a pure perovskite phase and very weak impurity reflections can be detected in the sample with y = 0.04. With x increasing from 0.12 to 0.24 and y increasing from 0 to 0.04, the ceramics transform gradually from a rhombohedral phase to a tetragonal phase and rhombohedral–tetragonal phase coexistence to a pseudocubic phase, respectively. The morphotropic phase boundary (MPB) of the system between rhombohedral and tetragonal locates in the range of x = 0.18–0.21, y = 0–0.03. The ceramics near the composition of the MPB have good performances with piezoelectric constant d 33 = 156 pC/N and electromechanical coupling factor k p = 0.34 at x = 0.21 and y = 0.01, which attains a maximum value in this ternary system. Adding content of BiCoO3 leads to a disappearance of the response in the curves of dielectric constant-temperature to the ferroelectric–antiferroelectric transition. The temperature dependence of dielectric properties suggests that the ceramics are relaxor ferroelectrics. The results show that (1 − x − y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBiCoO3 ceramics are good candidate for use as lead-free ceramics.  相似文献   

13.
ZnFe2O4/α-Fe2O3 composite hollow nanospheres were successfully fabricated via a facile one-pot solvothermal method, utilizing polyethylene glycol as soft template. X-ray diffraction and scanning electron microscopy analysis revealed that the prepared nanospheres with cubic spinel and rhombohedra composite structure had a uniform diameter of about 370 nm, and the hollow structure could be further confirmed by transmission electron microscopy. Energy dispersive X-ray, X-ray photoelectron spectroscopy and Fourier transform infrared techniques were also applied to characterize the elemental composition and chemical bonds in the hollow nanospheres. The ZnFe2O4/α-Fe2O3 composite hollow nanospheres show attractive light absorption property for potential applications in electronics, optics, and catalysis.  相似文献   

14.
A novel method was utilized to synthesize one-dimensional β-Ga2O3 nanostructures. In this method, β-Ga2O3 nanostructures have been successfully synthesized on Si(111) substrates through annealing sputtered Ga2O3/Mo films under flowing ammonia in a quartz tube. The as-obtained samples were analyzed in detail using the methods of X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDX) attached to the HRTEM instrument. The results show that the formed nanostructures are single-crystalline Ga2O3. The annealing temperature has an evident influence on the morphology of the β-Ga2O3 nanostructures. The growth mechanism of the β-Ga2O3 nanostructures is also discussed by conventional vapor-solid (VS) mechanism.  相似文献   

15.
Lifeng Cui 《Materials Letters》2009,63(28):2499-2502
Novel MnCO3/α-Fe2O3 nanocrystal heterostructures, with MnCO3 nanorods 5-10 nm in diameter and 15-50 nm in length, grown onto the surfaces of the α-Fe2O3 nanohexahedrons sized around 30-50 nm, were fabricated via a two-step solvothermal route. The coalescent planes of the heterostructure for the MnCO3 nanorod and the α-Fe2O3 nanohexahedron were determined to be (01?4) and (110), respectively. The formation of the MnCO3 nanorods from the Mn contained amorphous flakes was tracked by transmission electron microscopy observations at various reaction stages, which suggested a rolling-broken-growth process. Evidenced by the comparative experimental result, the α-Fe2O3 nanohexahedrons played an important role in inducing the nucleation and growth of the hexagonal MnCO3 nanorods on their surfaces.  相似文献   

16.
Although existence of MgAl2O4-γ-Al2O3 solid solution has been reported in the past, the detailed interactions have not been explored completely. For the first time, we report here a mathematical framework for the detailed solid solution interactions of γ-Al2O3 in MgAl2O4 (spinel). To investigate the solid solubility of γ-Al2O3 in MgAl2O4, Mg-Al spinel (MgO-nAl2O3; n = 1, 1.5, 3, 4.5 and an arbitrary high value 30) precursors have been heat treated at 1000°C. Presence of only non-stoichiometric MgAl2O4 phase up to n = 4.5 at 1000°C indicates that alumina (as γ-Al2O3) present beyond stoichiometry gets completely accommodated in MgAl2O4 in the form of solid solution. γα alumina phase transformation and its subsequent separation from MgAl2O4 has been observed in the Mg-Al spinel powders (n > 1) when the 1000°C heat treated materials are calcined at 1200°C. In the mathematical framework, unit cell of MgAl2O4 (Mg8Al16O32) has been considered for the solid solution interactions (substitution of Mg2+ ions by Al3+ ions) with γ-Al2O3. It is suggested that combination of unit cells of MgAl2O4 takes part in the interactions when n > 5 (MgO-nAl2O3).  相似文献   

17.
The effect of annealing duration in oxygen flow on the superconducting characteristics of YBa2Cu3O7 bulk ceramics was investigated by structural, electrical, magnetic, and electronic microscopy investigations. The long-time annealing is deleterious for the superconductivity in YBa2Cu3O7 ceramics. The optimum time interval for annealing is from 20 to 70 h at 950°C, and within this range the maximum value ofT c is obtained.  相似文献   

18.
Thermometers consisting of RuO2–Al2O3 composite thin films were prepared by RF sputtering. It was found that different electrode-patterning techniques have dissimilar effects on the magnetoresistance (MR) and the temperature coefficient of resistance (TCR). In general, the thermometers with electrodes fabricated by photo-resist lithography exhibit superior performance compared to those with electrodes prepared using a metal mask. By adjusting the relative compositions of RuO2 and Al2O3, the thermometers can be applied to a wide temperature range from 60 mK to 500 K. In a pulsed magnetic field up to 55 T, the MR at 4.2 K of a typical thermometer for the temperature range from 1.4 K to 300 K increases linearly with magnetic field to a maximum of ~15 %, corresponding to a temperature deviation of ~−4 %. As frequency increases from dc to 1.9 MHz, the MR decreases from  −13 % to ~ − 0.5 % at T = 1.3 K and H = 55 T. By integrating the thermometer with a heater on a sapphire chip, a micro-calorimeter can be developed and successfully used to measure the heat capacity of small mg-sized sample. The RuO2–Al2O3 composite film can also be employed as an infrared bolometer operated at room temperature.  相似文献   

19.
Glasses were prepared by the melt-quench technique in the K2O–SiO2–Bi2O3–TiO2 (KSBT) system and crystallized bismuth titanate, BiT (Bi4Ti3O12) phase in it by controlled heat-treatment at various temperature and duration. Different physical, thermal, optical, and third-order susceptibility (χ3) of the glasses were evaluated and correlated with their composition. Systematic increase in refractive index (n) and χ3 with increase in BiT content is attributed to the combined effects of high polarization and ionic refraction of bismuth and titanium ions. Microstructural evaluation by FESEM shows the formation of polycrystalline spherical particles of 70–90 nm along with nano-rods of average diameter of 85–90 nm after prolonged heat treatment. A minor increase in dielectric constants (εr) has been observed with increase in polarizable components of BiT in the glasses, whereas a sharp increase in εr in glass–ceramics is found to be caused by the formation of non-centrosymmetric and ferroelectric BiT nanocrystals in the glass matrix.  相似文献   

20.
Xonotlite (Ca6Si6O17(OH)2) nanobelts were synthesized by a microwave-assisted hydrothermal method at 180 °C for 90 min independent of the feeding molar ratio of Ca(NO3)2·4H2O to Na2SiO3·9H2O in the range of 0.8-3.0. Crystalline wollastonite (β-CaSiO3) nanobelts were obtained by microwave thermal transformation of Ca6Si6O17(OH)2 nanobelts at 800 °C for 2 h. Ca6Si6O17(OH)2 nanobelts were used as both the precursor and the template for the preparation of β-CaSiO3 nanobelts. The morphology and size of Ca6Si6O17(OH)2 nanobelts could be well preserved during the microwave thermal transformation process. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号