首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The solid state reactions and the phase relations in the CaAl2O4|CaGa2O4 system, of which both end-members have the stuffed tridymite structure, were examined by using three kinds of starting materials; A (CaCO3 + (Al,Ga)2O3), B (CaAl2O4 + CaGa2O4) and C (CaCO3 + Al2O3 + Ga2O3). In the starting material B, a very low rate of solid state reaction between CaAl2O4 and CaGa2O4 was found, which seemed to be due to very slow interchange of Al3+ and Ga3+ located in tetrahedra of this structure. In order to obtain the probable equilibrium phase relations, it was necessary to use the starting material A. In the present system, a new phase was found in a wide range of composition as a stable phase, which was supposed to have the same structure as so-called metastable phase of CaGa2O4 and different array of tetrahedra from either CaAl2O4 or CaGa2O4|I.  相似文献   

2.
The modifications of CaAl2O4 and CaGa2O4 with the stuffed tridymite structure were examined under high temperatures (600 ~ 1500 °C) and high pressures (10 ~ 40 kb). Calcium monoaluminate CaAl2O4 was found to transform to three kinds of high-pressure modifications. The original CaAl2O4 (CA-I) changed to the phase CA-II which had m-CaGa2O4 type structure with a different array of tetrahedra in the six-membered rings of tetrahedron. The phase CA-II transformed either to the phase CA-IV with CaFe2O4 type structure or to an unknown phase (CA-III) under high pressures. The phase CA-IV was obtained under the pressures above 30 kb and at the temperatures above 1000 °C. Calcium monogallate CaGa2O4 transformed to the CaFe2O4 type structure above 30kb and 700 °C. No phases such as CA-II and CA-III were found. The structural relations among these modifications were discussed.  相似文献   

3.
Eu2+,Nd3+ co-doped calcium aluminate with high brightness and long persistent luminescence was prepared by the combustion method. The luminescent properties of CaAl2O4-based luminescent materials have been studied systematically. The phosphor powders were further investigated by X-ray diffractometer (XRD), photoluminescence excitation and emission spectra (PL) and brightness meter. The analytical results indicated that the phase of CaAl2O4 was formed when the initiating combustion temperature was 400 °C. The broad band UV excited luminescence of the CaAl2O4:Eu2+,Nd3+ was observed at the blue region (λmax = 440 nm) due to transitions from the 4f65d1 to the 4f7 configuration of the Eu2+ ion. The decay time of the persistence indicated that the persistent luminescence phosphor has bright phosphorescence and maintains a long duration.  相似文献   

4.
In order to search efficient red-emitting phosphors for white LEDs application, CaAl12O19:Mn4+ phosphors have been prepared by a combustion method assisted with GeO2 flux. The influence of GeO2 concentration and annealing temperature on the structure and luminescence intensity for the phosphors has been investigated. The mechanism for luminescence enhancement has been discussed. At GeO2 doping concentration of 1.5 mol%, the red emission intensity increases by 81% under 330 nm UVA excitation. More isolated luminescence center Mn4+ ions rather than pairs of Mn4+-Mn2+ ions are formed in the lattice with the introduction of GeO2 at high temperature oxidation, leading to the enhancement of the red emission. A feasible new way to enhance the red emission in CaAl12O19:Mn4+ phosphor is obtained.  相似文献   

5.
A series of single-phased CaAl2Si2O8: Eu, Tb phosphors have been synthesized at 1400 °C via a solid state reaction. The emission bands of Eu2+ and Eu3+ were observed in the air-sintered CaAl2Si2O8: Eu phosphor due to the self-reduction effect. Tb3+ ions that typically generated green emission were added in CaAl2Si2O8: Eu phosphor for contributing for a wider-range tunable emission. Energy transfer from Eu2+ to Tb3+ and the modulation of valence distribution of Eu2+/Eu3+ that contributes to the tunable color emitting were elucidated. More importantly, a white emission can be obtained by controlling the codoped contents of Li+ as well as suppressing the self-reduction degree of Eu. The white light emitting with the color coordinate (0.326, 0.261) was obtained, which indicates that CaAl2Si2O8: Eu, Tb is a promising tunable color phosphor for application in ultraviolet light emitting diodes (UV-LEDs).  相似文献   

6.
The oxygen permeability of CaAl0.5Fe0.5O2.5+δ brownmillerite membranes at 1123-1273 K was found to be limited by the bulk ionic conduction, with an activation energy of 170 kJ/mol. The ion transference numbers in air are in the range 2×10−3 to 5×10−3. The analysis of structural parameters showed that the ionic transport in the CaAl0.5Fe0.5O2.5+δ lattice is essentially along the c axis. The largest ion-migration channels are found in the perovskite-type layers formed by iron-oxygen octahedra, though diffusion in tetrahedral layers of the brownmillerite structure is also possible. Heating up to 700-800 K in air leads to losses of hyperstoichiometric oxygen, accompanied with a drastic expansion and, probably, partial disordering of the CaAl0.5Fe0.5O2.5+δ lattice. The average thermal expansion coefficients of CaAl0.5Fe0.5O2.5+δ ceramics in air are 16.7×10−6 and 12.6×10−6 K−1 at 370-850 and 930-1300 K, respectively.  相似文献   

7.
A series of (Sr1−z, Caz)(Al1−y, By)2O4:xEu2+ phosphors were synthesized by the sol–gel process and were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and photoluminescence (PL) excitation and emission spectra. The experiment results revealed that the highest intensity of Sr(Al1.98, B0.02)O4:Eu2+ phosphor with pure monoclinic SrAl2O4 was achieved by annealing at the temperature of 1200 °C and the Eu2+ content of 8 mol%. However, when the post-treatment temperature for Sr(Al1.98, B0.02)O4: Eu2+ was over 1200 °C, the Sr4Al14O25 phase appeared as a minor phase, inducing small blue-shift in the emission peak (520–509 nm). Doping higher content of B3+ (y = 0.02–0.40) into SrAl2O4:Eu2+ at 1200 °C resulted in the transformation of phase from SrAl2O4 to Sr4Al14O25 as well as to SrB2Al2O7, which made the emission intensity enhance and the emission shift to a much shorter wavelength region (λp = 467 nm). It was found that, instead of purely using Sr atoms, Ca atoms with content of 20–40% could induce the crystal structure of (Sr1−z, Caz)(Al1−y, By)2O4:xEu2+, which led to SrAl2O4 from monoclinic to hexagonal phase. As a result, SrAl2O4 solid solution was obtained and then SrAl2O4:Eu2+ to emit 518 nm green light. At higher Ca content (z > 40%), a new CaAl2O4 solid solution was formed and a blue emission of CaAl2O4:Eu2+ was obtained.  相似文献   

8.
The solid solubility of the SrAl2O4-CaAl2O4 system has been investigated using high resolution synchrotron powder diffraction methods. Analysis of the patterns shows there is a limited composition range at which single phase samples can be obtained, x<0.25 and x>0.75 for the series Ca1−xSrxAl2O4. At intermediate compositions up to three phases are observed, two monoclinic and one hexagonal. The temperature dependence of the structures is also described.  相似文献   

9.
We present a systematic study on the preparation, microstructure, and magnetic properties of Fe3O4 microspheres and Fe3O4@SiO2 microspheres. Results showed that Fe3O4 microspheres’ diameter can be tuned by Fe3+ concentration, whereas their average grain size can be tuned by polyethylene glycol (PEG) 2000 dosage or PEG molecular weight. The magnetic saturation value of Fe3O4 microspheres was observed to be dependent on their average grain size, but not the sphere diameter. Fe3O4@SiO2 microspheres with different magnetic saturation values were achieved by adjusting shell thickness. Furthermore, the synthesized Fe3O4 and Fe3O4@SiO2 microspheres with high and controllable magnetic saturation value endow them with great application potentials.  相似文献   

10.
LiNdP4O12 single crystals were grown by slow-cooling a Li2OP2O5 flux. Crystal morphology and macroscopic crystal quality depend on the solution composition in the ternary system Li2ONd2O3P2O5. Under the favorable growth conditions, platy crystals of 15 × 10 × 1 mm3 were obtained.  相似文献   

11.
Crystals of KDyP4O12 have been grown by the flux technique and characterized by single-crystal X-ray diffraction. KDyP4O12 crystallizes in the monoclinic C2/c space group with lattice parameters: a=7.8158(3), b=12.3401(5), c=10.4382(3) Å, β=111.053°(2), V=939.6(4) Å3, Z=4. The crystal structure has been refined yielding a final R(F2)=0.034 and Rw(F2)=0.082 for 902 independent reflections (Fo2≥2σ(Fo2)). The structure of KDyP4O12 consists of DyO8 polyhedra and cyclotetraphosphate P4O12 groups sharing oxygen atoms to form a three-dimensional framework, delimiting intersecting tunnels in which the potassium ion is located. Each K+ ion is bonded to 10 oxygen atoms. The energies of the vibrational modes of the crystal were obtained from measurements of the infrared and Raman spectra.  相似文献   

12.
Ionic conductivities were measured on the polycrystalline samples of layered titanates, Na2Ti3O7 and K2Ti4O9, and their derivatives. The activation energies and the prefactors of the conductions were 0.70 eV and 7.9 × 10 (Ωcm)?1K for Na2Ti3O7 and 0.81 eB and 1.1 × 103 (Ωcm)?1K for K2Ti4O9. A small amount of Nb2O5 was doped to these titanates substituting TiO2. Remarkable enhancements of ionic conductivities were observed with the doping. A new metastable phase, Li2Ti3O7, was prepared by ion-exchange of Na2Ti3O7 and its ionic conductivity was measured.  相似文献   

13.
M.G. Brik  N.M. Avram 《Optical Materials》2011,33(11):1671-1676
The electronic energy levels of the six-coordinated Mn4+ ion in the pyrochlores Y2B2O7 (B = Sn4+, Ti4+) have been computed using the exchange charge model of crystal field theory. The calculated Mn4+ energy levels and their trigonal splitting are in good agreement with the experimental spectra. The calculated crystal field parameters show that the higher crystal field strength in Y2Sn2O7 arises from an increased orbital overlap effect between the Mn4+ ion and the nearest oxygen ions, which are located at the 48f crystallographic position of the pyrochlore lattice. This increased overlap in Y2Sn2O7 occurs despite the fact that the Mn4+-O2− bond distance in Y2Sn2O7 is longer than in Y2Ti2O7 and is attributed to a lack of hybridization (covalent bonding) between the filled 2p orbital of oxygen ion occupying the 48f site of the pyrochlore lattice and the filled Sn4+ 4d10 orbital. The low temperature emission spectrum of Mn4+ activated Y2Sn2O7 is analyzed in terms of a weak zero phonon line (R-line) with accompanying vibrational side bands.  相似文献   

14.
A mixed-metal citrate precursor method was used to synthesize SrAl2O4. The effects of the pH of the starting solutions and the molar ratio of citric acid to total metal cations concentration (CA/M) on the formation of SrAl2O4 were studied. DTA, TG, FT-IR, XRD and field emission scanning electron microscopy (FESEM) were used to characterize the precursors and the derived oxide powders. XRD analysis showed that single-phase SrAl2O4 was synthesized from CA/M = 2 precursors at a temperature of 900 °C for 2 h, without the formation of any intermediate phase.  相似文献   

15.
The title compounds belong to a group of isostructural M2P4O12 tetrametaphosphates with monoclinic (C2/c) symmetry. The two structures have been profile-refined by means of the Rietveld technique on the basis of neutron powder diffraction data. The three-dimensional framework is built up of tetrametaphosphate anions and two distinct metal-oxygen octahedra, (M1)O6 and (M2)O6. The latter octahedron is somewhat larger and more distorted than (M1)O6. The results show that in both solid solutions nickel preferentially enters the M1 sites, a tendency also observed in olivine and sarcopside, which contain MO6 octahedra similar in shape and symmetry to those in M2P4O12.  相似文献   

16.
Ferromagnetic films of spinel CoFe2O4 have been grown epitaxially on Si(001) using CeO2/YSZ double buffer layers. The heterostructures were built in a single process by pulsed laser deposition with real-time control by reflection high-energy electron diffraction. YSZ and CeO2 grow cube-on-cube on Si(001) and CoFe2O4 grows with (111) out-of-plane orientation, presenting four in-plane crystal domains. The interface with the buffer layers is smooth and the CoFe2O4 surface is atomically flat, with roughness below 0.3 nm. The films are ferromagnetic with saturation magnetization around 300 emu/cm3. The properties signal that CoFe2O4 is a good candidate for monolithic devices based on ferromagnetic insulating spinels.  相似文献   

17.
Lithium has been removed electrochemically at 15 μA/cm2 from LiMn2O4 (spinel) to yield single phase Li1?xMn2O4 for 0 < × ? 0.60. The electrochemical curve suggests that beyond x = 0.60 an electrochemical process other than lithium extraction occurs. Powder X-ray-diffraction spectra indicate that during the extraction process the [Mn2]O4 framework of the spinel structure remains intact. Previous results have shown that 1.2 Li+ ions can also be inserted into LiMn2O4, which suggests that lithium may be cycled in and out of the [Mn2]O4 framework of the spinel structure over a wide range of x, at least from Li0.4Mn2O4 to Li2Mn2O4. Discussion of the mechanism of formation of λ-MnO2 in an acidic environment is extended.  相似文献   

18.
Crystal habits of LiMn2O4 prepared through a sol-gel method using different starting materials (metal acetates and metal nitrates) are studied using a crystal shape algorithm. Density functional theory (DFT) as implemented in VASP is employed to study the thermodynamic stabilities and the electronic structure of the different hkl planes of LiMn2O4, as identified by the crystal shape algorithm. The crystal habit of lithium manganate prepared through the metal acetate route, LiMn2O4 (A), seems to possess a higher thermodynamic stability compared to the metal nitrate route viz. LiMn2O4 (N). Electrochemical cycling measurements show that the capacity retention in LiMn2O4 (A) is better than LiMn2O4 (N) at low (C/10) as well as at higher (5C) rates.  相似文献   

19.
The compounds EuMn2P2, EuMn2As2, EuMn2Sb2, YbMn2As2, and YbMn2Sb2 were prepared for the first time. Their crystal structure corresponds to that of Ce2O2S (ordered “anti-”La2O3 or CaAl2Si2-type structure). Their lattice constants are reported. Attempts to prepare isotypic compounds with typically three-valent rare earth metals have failed so far. The new compounds can be rationalized as normal valence compounds with the expected oxidation numbers e.g. Eu2+Mn2+Mn2+P3?P3?.  相似文献   

20.
Compound CaAl4O7 (CA4), SrAl4O7 (SA4), CaAl12O19 (CA12) and SrAl12O19 (SA12) have been synthesized by using single step combustion method. The phosphors have been characterized by XRD, SEM and PL techniques. Both CA4 and SA4 possess monoclinic crystal structure whereas CA12 and SA12 possess hexagonal structure. Effects of crystal symmetry on the emission spectrum have been studied by doping the samples with Ce3+ and Eu2+ ions. The luminescence properties of Ce3+ and Eu2+ in these hosts is discussed on the basis of their covalent character and the crystal field splitting of the d-orbital of dopant ions. The spectroscopic properties, crystal field splitting, centroid shift, red shift and stokes shift have been studied. Spectroscopic properties of Eu2+ ions have been accurately predicted from those of Ce3+ ions in the same host. Most importantly experimental results were matched excellently with the calculated results. The preferential substitution of Ce3+ and Eu2+ at different Ca2+, Sr2+ crystallographic sites have been discussed. The dependence of emission wavelengths of Ce3+ and Eu2+ on the local symmetry of different crystallographic sites was also studied by using Van Uitert’s empirical relation. Differences in the emission spectrum of these samples have been observed despite their similar crystal structures and space group. Possible reasons have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号