首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigates air pollution dispersion in urban areas by means of Computational Fluid Dynamics (CFD). The commercial CFD software FLUENT was used to implement two different turbulence simulation methods (RANS and LES), in domains similar to complex urban environments. Particularly, different combinations of roof shapes were studied and simulation results of pollutant (ethane) concentrations were compared against experimental data. The building height (H) to the neighbour building distance (B) ratio was also taken into consideration. Previous studies showed that both RANS and LES models are accurate enough to predict pollutant concentrations fields in B/H = 1. In the present study the incapability of RANS models to predict accurately pollutant concentration in B/H = 0.5 for all roof shapes configurations is revealed.  相似文献   

2.
This paper compares computational fluid dynamics (CFD) results using various revised kε models and large eddy simulation (LES) applied to flow around a high-rise building model with 1:1:2 shape placed within the surface boundary layer. The first part of the paper examines the accuracy of various revised kε models, i.e. LK model, MMK model and Durbin's revised kε model, by comparing their results with experimental data. Among the computations using various revised kε models compared here, Durbin's revised kε model shows the best agreement with the experiment. The reason for the good performance of Durbin's model is discussed on the basis of ‘Realizability’ of predicted results. The second part of the paper describes the computations based on LES with and without inflow turbulence applied to the same flowfield. The results are compared with those of the experiments and Durbin's kε model in order to clarify the effect of velocity fluctuations on prediction accuracy of time-averaged velocity fields around the building. Special attention is paid to prediction accuracy for reproducing flow behind a building. The LES results with inflow turbulence show generally good agreement with experimental results in terms of the distributions of velocity and turbulence energy in this region. This improvement is mainly due to the fact that the periodic velocity fluctuation behind the building is well reproduced in LES.  相似文献   

3.
In residential building design, areaway can act as an open subsurface space to help improve the living environment in adjacent basement by natural ventilation. To study this particular ventilation phenomenon mainly driven by wind force, the first part of this paper presents an investigation of flow field and pollution dispersion inside areaway space based on a wind tunnel experiment. In the experiment, the measurement of mean velocity, turbulence and concentration as well as the flow visualization were carried out for a rectangular cavity-like areaway model with the width to height (w/h) ratio ranging from 0.3 to 1.0 and the influence of above-ground building has also been investigated. The experimental results reveal quite different airflow patterns characterized with unsteady vortex movement inside the areaway model, which indicates that the w/h ratio and the above-ground building are important factors for ventilating the areaway space. Furthermore, for the purpose of computational fluid dynamics (CFD) model validation, the experimental results of flow fields were compared with the simulation results. The areaway model of w/h = 1 was used for this study and the simulations were performed using large-eddy simulation (LES) and standard k-ε turbulence model. The numerical results show a good agreement with the experimental results when using LES with inflow turbulence. The further investigations with regard to the characteristics of flow field and pollutant removal as well as ventilation performance were also performed by LES.  相似文献   

4.
5.
Numerical evaluation of wind effects on a tall steel building by CFD   总被引:4,自引:0,他引:4  
A comprehensive numerical study of wind effects on the Commonwealth Advisory Aeronautical Council (CAARC) standard tall building is presented in this paper. The techniques of Computational Fluid Dynamics (CFD), such as Large Eddy Simulation (LES), Reynolds Averaged Navier-Stokes Equations (RANS) Model etc., were adopted in this study to predict wind loads on and wind flows around the building. The main objective of this study is to explore an effective and reliable approach for evaluation of wind effects on tall buildings by CFD techniques. The computed results were compared with extensive experimental data which were obtained at seven wind tunnels. The reasons to cause the discrepancies of the numerical predictions and experimental results were identified and discussed. It was found through the comparison that the LES with a dynamic subgrid-scale (SGS) model can give satisfactory predictions for mean and dynamic wind loads on the tall building, while the RANS model with modifications can yield encouraging results in most cases and has the advantage of providing rapid solutions. Furthermore, it was observed that typical features of the flow fields around such a surface-mounted bluff body standing in atmospheric boundary layers can be captured numerically. It was found that the velocity profile of the approaching wind flow mainly influences the mean pressure coefficients on the building and the incident turbulence intensity profile has a significant effect on the fluctuating wind forces. Therefore, it is necessary to correctly simulate both the incident wind velocity profile and turbulence intensity profile in CFD computations to accurately predict wind effects on tall buildings. The recommended CFD techniques and associated numerical treatments provide an effective way for designers to assess wind effects on a tall building and the need for a detailed wind tunnel test.  相似文献   

6.
Z. T. Ai  C. M. Mak 《Indoor air》2016,26(2):259-273
Previous studies regarding interunit dispersion used Reynolds‐averaged Navier–Stokes (RANS) models and thus obtained only mean dispersion routes and re‐entry ratios. Given that the envelope flow around a building is highly fluctuating, mean values could be insufficient to describe interunit dispersion. This study investigates the wind‐induced interunit dispersion around multistory buildings using the large eddy simulation (LES) method. This is the first time interunit dispersion has been investigated transiently using a LES model. The quality of the selected LES model is seriously assured through both experimental validation and sensitivity analyses. Two aspects are paid special attention: (i) comparison of dispersion routes with those provided by previous RANS simulations and (ii) comparison of timescales with those of natural ventilation and the survival times of pathogens. The LES results reveal larger dispersion scopes than the RANS results. Such larger scopes could be caused by the fluctuating and stochastic nature of envelope flows, which, however, is canceled out by the inherent Reynolds‐averaged treatment of RANS models. The timescales of interunit dispersion are comparable with those of natural ventilation. They are much shorter than the survival time of most pathogens under ordinary physical environments, indicating that interunit dispersion is a valid route for disease transmission.  相似文献   

7.
This paper presents a numerical study of the flow around a cubical building in an atmospheric boundary layer. The Reynolds number of the flow is Re=4×106. Different types of turbulence models, steady state RANS, hybrid RANS/LES and LES, are used and the simulation results are compared to field measurement data of the mean pressure distribution. The objective is to build an approach to perform simulations on coarse grids with low computational cost. The outcome is that the Implicit LES (ILES) method is the most accurate for coarse grid simulations. In order to verify the sensitivity of the results to the Reynolds number, also simulations of a wind tunnel experiment at Reynolds number 4×104 are performed. We demonstrate that also for lower Reynolds numbers, although not optimal, the ILES approach leads to quite good results.  相似文献   

8.
In the present study, we performed both wind tunnel experiments and numerical simulations on a scale model with the focus on wind-driven natural ventilation in an areaway-attached basement with a single-sided opening. In the experiments, the mean value of the effective ventilation rate, purging flow rate (PFR) was measured for nine wind incidence angels based on the homogeneous emission rate method. The experimental results were used to validate two numerical approaches: Reynolds averaged Navier–Stokes (RANS) modeling and large-eddy simulation (LES). The influences of inflow turbulent fluctuations for LES modeling were also examined. The comparisons between the experiment and the numerical simulation indicate that LES can provide more accurate results than RANS and the inflow turbulent fluctuations should be taken into account for LES modeling. Based on LES with the inflow turbulent fluctuations, the mean airflow patterns within and around the areaway-attached basement were further studied for different wind incidence angles to investigate the influence of wind direction on ventilation performance in the areaway space. Furthermore, the relationships between the effective ventilation rate and the kinetic energy in the basement space were analyzed for three wind directions: 0°, 90° and 180°. A close correlation was found between the mean values, whereas the corresponding time variations showed large discrepancies. Finally, we compared the effective ventilation rate obtained using the homogeneous emission rate method and the airflow rates through the opening using two integration procedures. The effective ventilation rates were found lower than the airflow rates through the opening.  相似文献   

9.
Large Eddy Simulation (LES) undeniably has the potential to provide more accurate and more reliable results than simulations based on the Reynolds-averaged Navier-Stokes (RANS) approach. However, LES entails a higher simulation complexity and a much higher computational cost. In spite of some claims made in the past decades that LES would render RANS obsolete, RANS remains widely used in both research and engineering practice. This paper attempts to answer the questions why this is the case and whether this is justified, from the viewpoint of building simulation, both for outdoor and indoor applications. First, the governing equations and a brief overview of the history of LES and RANS are presented. Next, relevant highlights from some previous position papers on LES versus RANS are provided. Given their importance, the availability or unavailability of best practice guidelines is outlined. Subsequently, why RANS is still frequently used and whether this is justified or not is illustrated by examples for five application areas in building simulation: pedestrian-level wind comfort, near-field pollutant dispersion, urban thermal environment, natural ventilation of buildings and indoor airflow. It is shown that the answers vary depending on the application area but also depending on other—less obvious—parameters such as the building configuration under study. Finally, a discussion and conclusions including perspectives on the future of LES and RANS in building simulation are provided.  相似文献   

10.
The application of three turbulence models—standard kε, re-normalization group (RNG) kε and RNG-based large eddy simulation (LES) model—to simulate indoor contaminant particle dispersion and concentration distribution in a model room has been investigated. The measured air phase velocity data obtained by Posner et al. [Energy and Buildings 2003;35:515–26], are used to validate the simulation results. All the three turbulence model predictions have shown to be in good agreement with the experimental data. The RNG-based LES model has shown to yield the best agreement. The flow of contaminant particles (with diameters of 1 and 10 μm) is simulated within the indoor airflow environment of the model room. Comparing the three turbulence models for particle flow predictions, the RNG-based LES model through better accommodating unsteady low-Reynolds-number (LRN) turbulent flow structure has shown to provide more realistic particle dispersion and concentration distribution than the other two conventional turbulence models. As the experimental approach to access indoor contaminant particle concentration can be rather expensive and unable to provide the required detailed information, the LES prediction can be effectively employed to validate the widely used kε models that are commonly applied in many building simulation investigations.  相似文献   

11.
Several studies have been carried out on CFD prediction based on a RANS (Reynolds Averaged Navier–Stokes equations) model for dispersion around buildings, but it was reported that a RANS computation often provides extremely high concentration, which are not observed in usual measurements. These results suggest that transient simulations such as the large-eddy simulation (LES) might be required to achieve more accurate results. Nevertheless, very few studies have evaluated the basic performance of LES in modeling the dispersion field for a simple configuration in comparison with the RANS model. Therefore, relative performance of these simulation methods for dispersion problem around buildings should be clarified in order to make it possible to choose a suitable numerical method for its purpose. The purpose of this study is to confirm the accuracy of LES in modeling plume dispersion near and around a simple building model and to clarify the mechanism for the discrepancy in relation to the RANS computation. Simple LES modeling gives better results than RNG modeling of the distribution of concentration, although the difference for mean velocity is not so large. The horizontal diffusion of concentration is well reproduced by LES. This tendency is closely related to the reproduction of unsteady periodic fluctuation around cubical forms in LES.  相似文献   

12.
Previous CFD studies on pollution dispersion problems have largely centred on employing Reynolds-averaged Navier–Stokes (RANS) turbulence closure schemes, which have often been reported to overpredict pollutant concentration levels in comparison to wind tunnel measurement data. In addition, the majority of experimental and numerical investigations have failed to account for the aerodynamic effects of trees, which can occupy a significant proportion of typical urban street canyons. In the present work, the prediction accuracy of pollutant dispersion within urban street canyons of width to height ratio, W/H = 1 lined with avenue-like tree plantings are examined using two steady-state RANS models (the standard k-ε and RSM), and Large Eddy Simulation (LES) to compare their performance against wind tunnel experiments available on the online database CODASC [1]. Two cases of tree crown porosities are investigated, one for a loosely (Pvol = 97.5%) and another for a densely (Pvol = 96%) packed tree crown, corresponding to pressure loss coefficients of λ = 80 m−1 and λ = 200 m−1, respectively. Results of the tree-lined cases are then compared to a tree-free street canyon in order to demonstrate the impact of trees on the flow field and pollutant dispersion, and it is observed that the presence of trees reduces the in-canyon circulation and air exchange, and increases the overall concentration levels. Between the two numerical methods employed, LES performs better than RANS, because it captures the unsteady and intermittent fluctuations of the flow field, and hence, successfully resolves the transient mixing process within the canyons.  相似文献   

13.
CFD modeling using RANS and LES of pollutant dispersion in a three-dimensional street canyon is investigated by comparison with measurements. The purpose of this study is to confirm the accuracy of LES in modeling plume dispersion in a simple street canyon model and to clarify the mechanism of the discrepancy in relation to RANS computation. Simple LES modeling is shown by comparison with wind tunnel experiments to give better results than conventional RANS computation (RNG) modeling of the distribution of mean concentration. The horizontal diffusion of concentration is well reproduced by LES, mainly due to the reproduction of unsteady concentration fluctuations in the street canyon.  相似文献   

14.
This paper presents a combined study of numerical simulations and wind tunnel tests for the determinations of wind effects on a long-span complex roof of the Shenzhen New Railway Station Building. The main objective of this study is to present an effective approach for the estimations of wind effects on a complex roof by computational fluid dynamics (CFD) techniques. A new inflow turbulence generator called the discretizing and synthesizing random flow generation (DSRFG) approach was applied to simulate inflow boundary conditions of a turbulent flow field. A new one-equation dynamic subgrid scale (SGS) model was adopted for the large eddy simulations (LES) of wind effects on the station building. The wind-induced pressures on the roof and turbulent flow fields around the station building were thus calculated based upon the DSRFG approach and the new SGS model integrated with the FLUENT software. In parallel with the numerical investigation, simultaneous pressure measurements on the entire station building were made in a boundary layer wind tunnel to determine the mean, fluctuating, and peak pressure coefficient distributions. The numerically predicted results were found to be consistent with the wind tunnel test data. The comparative study demonstrated that the recommended inflow turbulence generation technique and the new SGS model as well as the associated numerical treatments are useful tools for structural engineers to assess wind effects on long-span complex roofs and irregularly shaped buildings at the design stage.  相似文献   

15.
Prediction accuracy of pollutant dispersion within an urban street canyon of width to height ratio W/H=1 is examined using two steady-state Reynolds-averaged Navier–Stokes (RANS) turbulence closure models, the standard k–ε and Reynolds Stress Model (RSM), and Large Eddy Simulation (LES) coupled with the advection–diffusion method for species transport. The numerical results, which include the statistical properties of pollutant dispersion, e.g. mean concentration distributions, time-evolution and three-dimensional spreads of the pollutant, are then compared to wind-tunnel (WT) measurements. The accuracy and computational cost of both numerical approaches are evaluated. The time-evolution of the pollutant concentration (for LES only) and the mean (time-averaged) values are presented. It is observed that amongst the two RANS models, RSM performed better than standard k–ε except at the centerline of the canyon walls. However, LES, although computationally more expensive, did better than RANS in predicting the concentration distribution because it was able to capture the unsteady and intermittent fluctuations of the flow field, and hence resolve the transient mixing process within the street canyon.  相似文献   

16.
The present paper investigates the performance of various inflow turbulence generation techniques (ITGT) for large eddy simulation (LES) of flow and dispersion around a model building in a turbulent atmospheric boundary layer. Four different ITGT comprising 1 – no fluctuations, 2 – spectral method, 3 – vortex method and 4 – internal mapping, based on two basic methodologies (i.e. precursor and synthetic turbulence methods), are employed. These techniques are evaluated by considering their prediction accuracy, computational costs, complexity of implementation, inflow information required to operate and impacts on the flow downstream of the inlet, particularly in the wake region of the model building. Results indicate that the accuracy of LES predictions is greatly reliant on ITGT. It is shown that ITGT not only have significant effects on flow field vortical structures, but also influence frequency contents of velocity fluctuations, recirculation regions and plume shapes in the wake region.  相似文献   

17.
The purpose of this paper is to evaluate the effects of a building parameter, namely ceiling configuration, on indoor natural ventilation. The computational fluid dynamics (CFD) code Phoenics was used with the RNG k? turbulence model to study wind motion and ventilation flow rates inside the building. All the CFD boundary conditions were described. The simulation results were first validated by wind tunnel experiment results in detail, and then used to compare rooms with various ceiling configurations in different cases. The simulation results generated matched the experimental results confirming the accuracy of the RNG k? turbulence model to successfully predict indoor wind motion for this study. Our main results reveal that ceiling configurations have certain effects on indoor airflow and ventilation flow rates although these effects are fairly minor.  相似文献   

18.
Heat and mass transfer modelling in building facades with ventilated cavities requires information on the cavity air change rates, which can be a complex function of the building and cavity geometry and the meteorological conditions. This paper applies Reynolds-averaged Navier–Stokes (RANS) CFD to study wind-induced airflow in the narrow (23 mm) ventilated facade cavities of an isolated low-rise building. Both coupled and decoupled simulations are performed. In the coupled simulations, the atmospheric boundary layer wind-flow pattern around the building and the resulting airflow in the cavities are calculated simultaneously and within the same computational domain. In the decoupled simulations, two separate CFD simulations are conducted: a simulation of the outdoor wind flow around the building (with closed cavities) to determine the surface pressures at the position of the cavity inlet and outlet openings, and a simulation of the cavity airflow, driven by these surface pressures. CFD validation is performed for the external and internal (cavity) flows. It indicates an important modelling limitation: while both laminar and turbulent cavity airflow can be accurately reproduced with low-Reynolds number modelling, this method fails in the transitional regime. The valid CFD results (outside the transitional regime) are analysed in terms of cavity airflow patterns and cavity air change rates per hour (ACH) for different cavity positions, wind speeds and wind directions. The CFD results of cavity air speed and ACH compare favourably with values from previous experimental studies. The coupled and decoupled simulation results are compared to provide an indication of the local losses. It is concluded that future work should focus on adapting RANS CFD low-Reynolds number models to accurately model cavity flow in the transitional regime.  相似文献   

19.
Pedestrian level wind environment is affected by stagnated airflow in high-density cities. This study provides an understanding of the effects of building height and porosity size on pedestrian level wind comfort. The computational fluid dynamics (CFD) technique is utilized to reproduce wind flow around buildings at pedestrian level, and new wind comfort criteria for a low wind environment are adopted to evaluate wind comfort. More specifically, the Steady Reynolds Averaged Navier–Stokes (RANS) renormalization group (RNG) k–ε turbulence model is employed in this study, and the accuracy of the simulation results are assured by validation against the wind tunnel test data. The influence of different building heights and porosity sizes on wind comfort around an isolated building and a group of buildings are subsequently examined. It is shown that an increase building height could improve wind comfort inside the site boundary for both the isolated building and group of buildings. Furthermore, the wind comfort benefits increased when porosity is on the first floor compared to when it is on the second floor. Moreover, larger porosity size generally results in better wind comfort than smaller porosity size. From a practical view point, this study provides information for city planners and architects to use in the improvement of pedestrian level wind comfort, without losing land use efficacy.  相似文献   

20.
Up till recent years, predicting wind loads on full-scale tall buildings using Large Eddy Simulation (LES) is still impractical due to a prohibitively large amount of meshes required, especially in the vicinity of the near-wall layers of the turbulent flow. A hybrid approach is proposed for solving pressure fluctuations of wind flows around tall buildings based on the Reynolds Averaged Navier-Stokes (RANS) simulation, which requires coarse meshes, and the mesh-free Kinematic Simulation (KS). While RANS is commonly used to provide mean flow characteristics of turbulent airflows, KS is able to generate an artificial fluctuating velocity field that satisfies both the flow continuity condition and the specific energy spectra of atmospheric turbulence. The kinetic energy is split along three orthogonal directions to account for anisotropic effects in atmospheric boundary layer. The periodic vortex shedding effects can partially be incorporated by the use of an energy density function peaked at a Strouhal wave number. The pressure fluctuations can then be obtained by solving the Poisson equation corresponding to the generated velocity fluctuation field by the KS. An example of the CAARC building demonstrates the efficiency of the synthesized approach and shows good agreements with the results of LES and wind tunnel measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号