首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ZnO nanowires were grown on a-plane GaN templates by chemical vapor deposition (CVD) without employing a catalyst. The a-plane GaN templates were pre-deposited on an r-plane sapphire substrate by metal-organic CVD. The resulting ZnO nanowires grow in angles off- related to the GaN basal plane. X-ray diffraction (XRD) spectra showed that the ZnO layer was grown with a heteroepitaxial relationship of (110)ZnO||(110)GaN. Photoluminescence spectra measured at 17 K exhibited near-band-edge emission at 372 nm with a full width at half maximum of 10 nm. The growth mechanism on a-GaN was the Volmer-Weber (VW) mode and differed from the Stranski-Krastanow (SK) mode observed for growth on c-GaN. This difference results from the higher interfacial free-energy on the a-plane between ZnO and GaN than that on the c-plane orientation.  相似文献   

2.
3.
Yong-Won Song 《Thin solid films》2009,518(4):1323-12426
Enhanced functionality of the nanostructure-based devices can be achieved by customizing the doping, thereby managing the electrical properties of the nanostructures. We have optimized the synthesis condition of the ZnO nanowires (NWs) using hot-walled pulsed laser deposition (HW-PLD) that features the facilitated kinetic energy control of the laser-ablated particles. The electrical properties of the NWs have been managed by doping control while maintaining the NW morphologies. 1, 3, and 5 wt.% Ga concentration in the NWs is evaluated directly with energy dispersive spectrometer (EDS), and the exciton peak shifts are measured with room temperature photoluminescence (PL) to find the correlation between the concentration and the shifts. n-type Ga-doping status has been verified with low temperature PL to find the donor-bound exciton peaks. As for the morphology diversification, we have acquired both zigzag-shaped NWs and nanohorns using the same HW-PLD.  相似文献   

4.
Abstract

We report the growth of ZnO nanowires on nonwoven polyethylene fibers using a simple hydrothermal method at a temperature below the boiling point of water. The ZnO nanowires were grown from seed ZnO nanoparticles affixed onto the fibers. The seed ZnO nanoparticles, with diameters of about 6–7 nm, were synthesized in isopropanol by reducing zinc acetate hydrate with sodium hydroxide. The growth process was carried out in a sealed chemical bath containing an equimolar solution of zinc nitrate hexahydrate and hexamethylene tetramine at a temperature of 95 °C over a period of up to 20 h. The thickness and length of the nanowires can be controlled by using different concentrations of the starting reactants and growth durations. A 0.5 mM chemical bath yielded nanowires with an average diameter of around 50 nm, while a 25 mM bath resulted in wires with a thickness of up to about 1 μm. The length of the wires depends both on the concentration of the precursor solution as well as the growth duration, and in 20 h, nanowires as long as 10 μm can be grown. The nonwoven mesh of polyethylene fibers covered with ZnO nanowires can be used for novel applications such as water treatment by degrading pollutants by photocatalysis. Photocatalysis tests carried out on standard test contaminants revealed that the polyethylene fibers with ZnO nanowires grown on them could accelerate the photocatalytic degradation process by a factor of 3.  相似文献   

5.
采用化学气相沉积的方法,以Sn粉为催化剂制备出大长径比的Ga掺杂ZnO纳米线。采用扫描电子显微镜观察制备的产物,发现样品为直径约25~90nm的纳米线。通过比较不同Ga掺杂含量样品的室温光致发光谱,发现一定掺杂含量的Ga可以提高ZnO纳米线的紫外发光强度,同时,Ga的掺杂也会引起ZnO紫外发光峰的蓝移。随着Ga含量的增加,蓝移程度越来越小,甚至发生红移。Sn的引入只对Ga掺杂ZnO纳米线的蓝绿光有贡献。  相似文献   

6.
7.
以采用物理热蒸发法制备的纯ZnO纳米线和Ni掺杂ZnO纳米线为气敏基料,制备成旁热式气敏元件,用静态配气法对浓度为10^-4的甲烷气体进行了气敏性能的测试.结果表明Ni掺杂使ZnO纳米线对甲烷灵敏度提高了182%,响应时间和恢复时间分别缩短了3和2s.Ni的掺杂,在ZnO半导体禁带中引入新的复合中心,形成附加能级,提高了ZnO纳米线对甲烷的灵敏度.  相似文献   

8.
本文利用石英晶体微天平研究了氧化锌纳米线对尿酸氧化酶的固定性能和作为尿酸传感器的应用.本文在PBS溶液中对尿酸氧化酶进行固定,并且利用固定的传感器作为尿酸传感器,能检测浓度范围从5.0 × 10-6到8×10-5 molL-1的尿酸含量,所有结果都说明氧化锌纳米线是一种很好的生物传感器的材料.  相似文献   

9.
ZnO-core/SiOx shell nanowires were successfully fabricated and their morphology, structure, Raman and photoluminescence properties were examined. Not only the sputter-coated product had an one-dimensional morphology, but the tubular structure of SiOx shell was also continuous, smooth, and uniform, along the core nanowires. It was found that two fundamental modes (334, 437 cm−1) and 2 s order modes (1106, 1156 cm−1) of hexagonal ZnO appeared in the Raman spectrum of ZnO-core/SiOx shell nanowires. The photoluminescence (PL) spectrum of the core-shell nanowires were deconvoluted into three Gassian functions, centered at 382, 500, and 758 nm, whether the subsequent thermal annealing was performed or not. The integrated intensities of UV (382 nm) and green (758 nm) emissions were changed by means of the shell-coating and thermal annealing. We have discussed the possible emission mechanisms.  相似文献   

10.
11.
利用热蒸发和丝网印刷技术在玻璃基底上成功制备了氧化锌纳米线表面传导场发射阴极阵列,并测试其场发射性能。扫描电镜表明,在氩气和氧气流量分别为60和1mL/min,反应温度550℃保温30min条件下制备的氧化锌纳米线均匀垂直生长在玻璃基底上,直径大约在80~200nm,长度〉7μm。场发射测试表明,在阳压2000V和阴阳间距为500μm时,ZnO纳米线表面传导场发射阴极的开启电压为70V;在栅压为96V时,电子发射效率为26.2%,高于传统报道的表面传导电子发射器件,在经过80min的老练后发射接近稳定,平均发射电流接近135μA,表明ZnO纳米线表面传导场发射阴极有着稳定高效的场发射性能。  相似文献   

12.
柔性光电探测器具有轻便、易携带和优异的大面积兼容性等特点,在下一代光电子器件领域具有巨大的应用潜力.柔性光电探测器面临的主要挑战是在反复弯曲、拉伸、折叠等形变状态下难以保持优异的性能.本文通过低维度结构策略构筑了基于CsPbBr3纳米片和ZnO纳米线的柔性光电探测器.得益于一维纳米线和二维纳米片的高柔性,所构筑的光电探测器在各种应力下表现出优异的工作稳定性.例如,在弯曲1000次之后,器件的性能没有明显变化.此外,由于ZnO和CsPbBr3自身的光吸收特性,所构筑的柔性光电探测器展现出宽光谱光电响应能力(涵盖紫外和可见波段).在紫外和可见区域的峰值响应度分别为3.10和0.97 A W^-1,其相应的探测率分别为5.57×10^12和1.71×10^12Jones.本文针对柔性、高性能集成光电探测器提出的维度构筑策略,在未来智能、可穿戴光电子器件领域有着巨大的应用前景.  相似文献   

13.
A systematic study of the thermal transport properties of individual single-crystal zinc oxide (ZnO) nanowires (NWs) with diameters in the range of ~50-210 nm is presented. The thermal conductivity of the NWs is found to be dramatically reduced by at least an order of magnitude compared to bulk values, due to enhanced phonon-boundary scattering with a reduction in sample size. While the conventional phonon transport model can qualitatively explain the temperature dependence, it fails to account for the diameter dependence. An empirical relationship for assessing diameter-dependent thermal properties is observed, which shows an approximately linear dependence of the thermal conductivity on the cross-sectional area of the NWs in the measured diameter range. Furthermore, it is found that an amorphous-carbon layer coating on the NWs does not perturb the thermal properties of the NW cores, whereas 30 keV Ga(+) ion irradiation at low dose (~4 × 10(14) cm(-2)) leads to a remarkable reduction of the thermal conductivity of the ZnO NWs.  相似文献   

14.
We present a novel, low-cost approach to fabricate flexible piezoelectric nano- generators (NGs) consisting of ZnO nanowires (NWs) on carbon fibers and foldable Au-coated ZnO NWs on paper. By using such designed structure of the NGs, the radial ZnO NWs on a cylindrical fiber can be utilized fully and the electrical output of the NG is improved. The electrical output behavior of the NGs can be optionally controlled by increasing the fiber number, adjusting the strain rate and connection modes. For the single-fiber based NGs, the output voltage is 17 mV and the current density is about 0.09 μA·cm^-2, and the electrical output is enhanced greatly compared to that of previous similar micro-fiber based NGs. Compared with the single-fiber based NGs, the output current of the multi-fiber based NGs made of 200 carbon fibers increased 100-fold. An output voltage of 18 mV and current of 35 nA are generated from the multi-fiber based NGs. The electrical energy generated by the NGs is enough to power a practical device. The developed novel NGs can be used for smart textile structures, wearable and self-powered nanodevices.  相似文献   

15.
Abstract

One-dimensional nanostructures exhibit interesting electronic and optical properties due to their low dimensionality leading to quantum confinement effects. ZnO has received lot of attention as a nanostructured material because of unique properties rendering it suitable for various applications. Amongst the different methods of synthesis of ZnO nanostructures, the hydrothermal method is attractive for its simplicity and environment friendly conditions. This review summarizes the conditions leading to the growth of different ZnO nanostructures using hydrothermal technique. Doping of ZnO nanostructures through hydrothermal method are also highlighted.  相似文献   

16.
One-dimensional nanostructures exhibit interesting electronic and optical properties due to their low dimensionality leading to quantum confinement effects. ZnO has received lot of attention as a nanostructured material because of unique properties rendering it suitable for various applications. Amongst the different methods of synthesis of ZnO nanostructures, the hydrothermal method is attractive for its simplicity and environment friendly conditions. This review summarizes the conditions leading to the growth of different ZnO nanostructures using hydrothermal technique. Doping of ZnO nanostructures through hydrothermal method are also highlighted.  相似文献   

17.
于灵敏  朱长纯  商世广  潘金艳 《功能材料》2007,38(10):1569-1571
利用物理热蒸发法制备大规模的蒲公英状的ZnO纳米锥,利用荧光光谱仪对ZnO纳米锥进行了光致发光性能测试.针对现有的丝网印刷碳纳米管(CNTs)薄膜需要各种后处理工艺后才能改善其场发射特性的问题,提出了一种不需任何后处理丝网印刷ZnO纳米锥的浆料配制工艺.用该工艺制备的丝网印刷ZnO纳米锥的场发射特性测试表明,ZnO纳米锥与制浆剂质量比为3∶5的薄膜的开启场强最低为2.25V/μm(电流密度为1μA/cm2),在4.6V/μm场强下,阳极荧光粉的发光点亮度高且分布均匀.说明该方法成本低,工艺简单,无需任何后处理,在ZnO纳米锥场发射显示器的制作中有很好的实际应用价值.  相似文献   

18.
Li Jiang  Qianmao Ji 《Materials Letters》2007,61(10):1964-1967
Flower-like ZnO nanostructures composed of different building blocks, such as hexagonal pyramids, hexagonal prisms, and cones, have been synthesized on a large scale by a simple hydrothermal method in the absence of surfactants or organic solvents. The effects of the concentration of NaOH, reaction temperature, and reaction time on the morphologies of the resulting products have been investigated. The morphologies and the crystal structures of flower-like ZnO nanostructures were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM).  相似文献   

19.
20.
The phenomenon of band-gap engineering of ZnO inserts new platforms to its application base. A similar effort of engineering the optical band-gap of ZnO by ion beam irradiation has been put forwards via this study. We synthesised ZnO nanowires using polycarbonate track-etched membranes as templates. The effect of 50?MeV Li3+ ion beam (different fluence) on the band-gap of synthesised ZnO nanowires have been studied from Tauc plot and the decrease in the optical band-gap with increase in the radiation fluence has been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号