首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Absorptive properties of 100 nm thick silver (Ag) films coated on the surface of microstructured silicon prepared by femtosecond laser pulses irradiation in SF6 were measured in a wavelength range of 1.33–16.7 µm. Greatly enhanced light absorption of Ag films was observed in the entire measured wavelength range. For sample with 6–8 µm spikes, the absorptance is approximately 0.9 and essentially unchanged in the wavelength region of 1.33–10 µm, and decreases slightly when λ > 10 µm, but keeps higher than 0.75 over the whole measured wavelength range. The infrared absorption is strongly related to the height and density of the spikes. While for the samples without Ag coating, the absorption is much lower than that of the Ag films. Multiple reflection of light between spikes and surface plasmon excitation of nano-particles on the spikes surface may lead to the strongly enhanced infrared absorption in such a wide wavelength range.  相似文献   

2.
The infrared normal spectral emissivity of microstructured silicon prepared by femtosecond laser irradiation in SF6 was measured for the wavelength range 2.5 μm to 25 μm. Greatly enhanced emissivity compared to that of flat silicon was observed over the entire wavelength range. For a sample with 13-14 μm high spikes, the emissivity at a temperature of 100 °C is approximately 0.96. The emissivity decreases slightly in the wavelength region above 8 μm, but remains higher than 0.9 over most of the measured wavelength range. Also the average emissivity is less than Nextel- Velvet-811-21 Coating, it can be used stably at more wide temperatures from 100 °C to 400 °C. These results show the potential for microstructured silicon to be used as a flat blackbody source or silicon-based pyroelectric and microbolometer devices.  相似文献   

3.
Metal island films (MIFs) of Ag on glass substrates were fabricated by the e-beam evaporation technique. The dependence of the surface plasmon (SP) absorption properties on the deposition mass thickness and substrate temperature was quantified. The structural and optical characterization of the MIFs, obtained using spectrometry, grazing-incidence small-angle X-ray scattering (GISAXS) and atomic force microscopy (AFM) evidences the evolution of SP characteristics depending on the fabrication parameters: the red shift of the absorption peaks with the increase of deposition thickness accompanied by peak widening and the blue-shift of peaks with the increase of deposition temperature followed by the peak narrowing. These findings were explained by the differences in the concentration, shape and size of the obtained silver islands.  相似文献   

4.
Y. Suzuki  Y. Ojima  H. Fazyia 《Thin solid films》2007,515(5):3073-3078
Infrared absorption spectra were measured at normal incidence of radiation for polymers on post-annealed silver films of 4-10 nm mass thicknesses that had been deposited in ultra high vacuum onto Si substrate surfaces. Results show that the polymer absorption intensity depends on the annealing temperature and the silver mass thickness.Results clarified that no simple relation existed, such as a negative correlation between reflectivity and the infrared absorption enhancement, even when the mass thickness was made constant and the silver particles' size and shape were changed. For infrared absorption intensity to become large, particles must be positioned discretely, but if the distance between particles is too large, absorption intensity decreases. Moreover, results verified that optimal thin-film morphology was different according to the wavelength region.  相似文献   

5.
The influence of the incorporation of boron in diamond-like carbon (DLC) films on the microstructure of the coatings has been investigated. The boron-containing DLC films (a-C:B) have been deposited by pulsed laser deposition (PLD) at room temperature in high vacuum conditions, by ablating graphite and boron targets either with a femtosecond pulsed laser (800 nm, 150 fs, fs-DLC) or with a nanosecond pulsed laser (248 nm, 20 ns, ns-DLC). Alternative ablation of the graphite and boron targets has been carried out to deposit the a-C:B films. The film structure and composition have been highlighted by coupling Field Emission Scanning Electron Microscopy, Electron Energy Loss Spectroscopy and High Resolution Transmission Electron Microscopy. Using the B K-edge, EELS characterization reveals the boron effect on the carbon bonding. Moreover, the plasmon energy reveals a tendency of graphitization associated to the boron doping. Pure boron particles have been characterized by HRTEM and reveal that those particles are amorphous or crystallized. The nanostructures of the boron-doped ns-DLC and the boron-doped fs-DLC are thus compared. In particular, the incorporation of boron in the DLC matrix is highlighted, depending on the laser used for deposition. Electrical measurements show that some of these films have potentialities to be used in low temperature thermometry, considering their conductivity and temperature coefficient of resistance (TCR) estimated within the temperature range 160-300 K.  相似文献   

6.
Rf plasma deposited diamond-like carbon (DLC) films have been doped n-type with the addition of nitrogen as a feed gas to a magnetically confined rf plasma. Controlled amounts of nitrogen are added to the CH4/He plasma and the films are characterised. The electronic properties together with the microstructure of the deposited films are examined. Activation energy studies show the Fermi level can be moved from 0.5 eV away from the valence band for the undoped DLC films, through a maximum activation energy of 0.9 eV corresponding to the midgap and to 0.45 eV away from the conduction band with maximum N incorporation. The optical band gap first increases, indicative of a reduction in the band-edge tail states, and then tends to a steady value of ˜2 eV. Activation energy studies together with the optical band gap data are used to analyse the density of states for the deposited films. The preferential doping configuration of the atomic nitrogen and the importance of the π-π* states for electronic conduction for DLC:N films is discussed in the light of the findings.  相似文献   

7.
Alumino-silicate coatings and structures formed from alumino-silicate and amorphous chalcogenide submicrometer layers were prepared by pulsed laser deposition. Fabricated thin films were characterized in terms of their structure, morphology, topography, chemical composition, optical properties, and basic anticorrosive functionality. Prepared coatings are amorphous, smooth, without micrometer-sized droplets, with chemical composition close to parent targets. Spectral dependencies of refractive indices and extinction coefficients were derived from variable angle spectroscopic ellipsometry data. Amorphous chalcogenide/alumino-silicate structures present large refractive index differences of individual layers (Δn ~ 1.2 at 1550 nm) which could be useful for optical systems working at infrared telecommunication band wavelengths. Basic anticorrosion data of alumino-silicate layers show promising anticorrosion behavior.  相似文献   

8.
CdO doped (doping concentration 0, 1, 3 and 16 wt%) ZnO nanostructured thin films are grown on quartz substrate by pulsed laser deposition and the films are annealed at temperature 500 °C. The structural, morphological and optical properties of the annealed films are systematically studied using grazing incidence X-ray diffraction (GIXRD), energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), Micro-Raman spectra, UV–vis spectroscopy, photoluminescence spectra and open aperture z-scan. 1 wt% CdO doped ZnO films are annealed at different temperatures viz., 300, 400, 500, 600, 700 and 800 °C and the structural and optical properties of these films are also investigated. The XRD patterns suggest a hexagonal wurtzite structure for the films. The crystallite size, lattice constants, stress and lattice strain in the films are calculated. The presence of high-frequency E2 mode and the longitudinal optical A1 (LO) modes in the Raman spectra confirms the hexagonal wurtzite structure for the films. The presence of CdO in the doped films is confirmed from the EDX spectrum. SEM and AFM micrographs show that the films are uniform and the crystallites are in the nano-dimension. AFM picture suggests a porous network structure for 3% CdO doped film. The porosity and refractive indices of the films are calculated from the transmittance and reflectance spectra. Optical band gap energy is found to decrease in the CdO doped films as the CdO doping concentration increases. The PL spectra show emissions corresponding to the near band edge (NBE) ultra violet emission and deep level emission in the visible region. The 16CdZnO film shows an intense deep green PL emission. Non-linear optical measurements using the z-scan technique indicate that the saturable absorption (SA) behavior exhibited by undoped ZnO under green light excitation (532 nm) can be changed to reverse saturable absorption (RSA) with CdO doping. From numerical simulations the saturation intensity (Is) and the effective two-photon absorption coefficient (β) are calculated for the undoped and CdO doped ZnO films.  相似文献   

9.
Novel composite thin films consisting of nanosized Ag particles embedded in an amorphous Si matrix were made with Ag contents from 0 at% to 61 at% by radio frequency co-sputtering of Si and Ag. The microstructure and optical properties of the films were characterized by conventional and high resolution transmission electron microscopy and spectrometry in the wavelength range from 200 to 1500 nm. It was found that the films consist of nanosized Ag particles (2.8–6.0 nm) particle and their clusters embedded in an amorphous Si matrix. The optical absorption spectra of the films up to 40 at% Ag exhibit characteristics similar to the amorphous semiconductor Si. At higher Ag contents two absorption maxima at 350 nm and 700 nm appear. Effective medium theories were examined to predict the optical properties of the films and it was found that the predictions from the Sheng Ping theory with a modified dielectric function of bulk Ag (taking into account the mean free path limitation of Ag particle boundaries) qualitatively agree with the measured absorption spectra. The two absorption maxima are accounted for as interfacial plasma resonance absorption associated with the silver particle/silicon matrix interfaces.  相似文献   

10.
Amorphous chalcogenide films play a motivating role in the development of integrated planar optical circuits due to their potential functionality in near infrared (IR) and mid-IR spectral regions. More specifically, the photoluminescence of rare earth ions in amorphous chalcogenide films can be used in laser and amplifier devices in the IR spectral domain. The aim of the present investigation was to optimize the deposition conditions for the fabrication of undoped and Er3+ doped sulphide and selenide thin films with nominal composition Ga5Ge20Sb10S(Se)65 or Ga5Ge23Sb5S67 by pulsed laser deposition (PLD). The study of compositional, morphological and structural characteristics of the layers was realized by scanning electron microscopy-energy dispersive spectroscopy, atomic force microscopy and Raman spectroscopy analyses, respectively. Some optical properties (transmittance, index of refraction, optical band gap, etc.) of prepared chalcogenide films and optical losses were investigated as well. The clear identification of near-IR photoluminescence of Er3+ ions was obtained for both selenide and sulphide films. The decay of the 4I13/2 → 4I15/2 transition at 1.54 µm in Er3+ doped Ga5Ge20Sb10S65 PLD sulphide films was studied to assess the effects of film thickness, rare earth concentration and multilayer PLD deposition on their spectroscopic properties.  相似文献   

11.
Nanocrystalline samples of ZnO(Mn) were synthesized by hydrothermal method. The morphology of the samples was studied by HRTEM and SEM. X-ray diffraction was used to determine composition of the samples (ZnO and ZnMn2O4) and the mean crystalline size (from 16 to 99 nm). In this paper we report the experimental spectra of Raman scattering (from 100 to 1600 cm−1) with surface optical phonons (SOP) in range of 497–538 cm−1 as well as formation of new phases MnO, Mn3O4 and ZnMnO3. The phonon of registered phase's exhibit effects connected to phase concentration, while the SOP phonon mode exhibit significant confinement effect.  相似文献   

12.
Nanocrystalline zirconia thin films have been deposited on borosilicate glass substrates at ambient temperature by direct current (dc) magnetron sputtering. The present study demonstrates the possibility of growing zirconium oxide films in 100% pure oxygen dc plasma. Films of thickness of the order of 500 nm have been grown using a metallic Zr target in pure oxygen plasma. Interestingly, the presence of high temperature polymorphs of ZrO2 is observed in films deposited with 40, 60 and 80% oxygen in the sputtering gas, while only the monoclinic phase is observed at lower and higher oxygen percentages. The refractive index in this range of oxygen percentages peaks at 1.85 in the dispersion free region. The crystallite size in the films varies between 11-25 nm, as calculated from X-ray diffraction patterns and is dependent on oxygen percentage in the sputtering gas. The grain sizes observed in atomic force microscope images are in the range 38 to 45 nm. The dielectric constants of the films, measured at microwave frequencies [8-12 GHz] ranged between 13-19.2.  相似文献   

13.
We have fabricated a number of films using various concentrations of colloidal silica particles in a sol-gel derived matrix. The particles were flocculated to tailor the surface properties of the film. Digital image analysis and profilometry were used to characterize the materials. We observe local maxima of floc size and film textural properties at 0.177 wt.% and within a very narrow range of particle concentration.  相似文献   

14.
A green hydrothermal method was proposed for the controllable synthesis of ZnO2 nanocrystals and ZnO nanorods, using the common and cost-effective 2ZnCO3·3Zn(OH)2 powder and 30 mass% H2O2 aqueous solution as the raw materials. The characterization results from X-ray diffraction, high resolution transmission electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the products synthesized at 100-120 °C for 6 h or at 170 °C for 0 h were cubic phase ZnO2 nanocrystals; while those synthesized at 170 °C for 3-6 h were hexagonal phase ZnO nanorods. The UV-vis absorption spectra showed that the as-synthesized ZnO2 nanocrystals and ZnO nanorods had optical band gaps of about 4.1 and 3.3 eV, respectively.  相似文献   

15.
利用多弧离子镀在玻璃衬底上制备了TiO2薄膜和氮掺杂的TiO2薄膜样品,并对样品进行了220~500℃温度的热处理,通过X射线衍射(XRD)以及UV—Vis分光光度计等测试手段对热处理前后的样品的结构、光吸收特性进行了分析。结果表明:制备出的薄膜为非晶态结构,热处理后向锐钛矿、金红石相转变。理想工艺下镀制的掺氮TiO2薄膜经400℃热后,TiO2薄膜的光吸收限可由385nm红移至500nm。  相似文献   

16.
用激光烧结法制备的SnO2薄膜的气敏性质   总被引:1,自引:0,他引:1  
用溶胶-凝胶法制备SnO2前驱液,然后用提拉法分别在单晶Si和Al2O3基片表面制备出SnO2前驱膜,再用脉冲Nd:YAG激光烧结前驱膜使其转变为晶体SnO2薄膜.用XRD分析了单晶Si表面的SnO2薄膜,研究激光功率对SnO2薄膜相组成的影响.TEM观察表明,激光烧结后的薄膜SnO2颗粒均匀,直径约为10 nm.用激光烧结法制备的SnO2薄膜对浓度为1.80×10-4丙酮的最高灵敏度为30~40,明显高于用传统烧结法制备的SnO2薄膜的灵敏度.激光烧结能降低薄膜具有最高灵敏度的工作温度.  相似文献   

17.
We present our results on nonlinear optical (NLO) and optical limiting properties of Tetra tert-butyl phthalocyanine and Zinc tetra tert-butyl phthalocyanine studied at 633 nm using a continuous wave laser. We have evaluated the sign and magnitude of the third-order nonlinearity from the closed aperture Z-scan data while the nonlinear absorption properties were assessed using the open aperture data. We have observed low power optical limiting, with low limiting thresholds, based on nonlinear refraction in both the samples. We also present results on the NLO properties of the same dyes doped in Polymethylmethacrylate (PMMA). These studies indicate that both the phthalocyanines are potential candidates for low power optical limiting applications.  相似文献   

18.
Double perovskite Sr2FeMoO6 films were deposited by pulsed laser deposition at a wide temperature range and different atmospheres. The best films with TC = 340-370 K and low temperature magnetization of around 2.2 μB/f.u. were deposited at 1050 °C with 9 Pa Ar/5%H2 atmosphere. X-ray diffraction showed no impurities and full texturization of all the films. Atomic force microscopy revealed increasing surface roughness with increasing deposition temperature.  相似文献   

19.
Good quality strontium ruthenate (SrRuO3) thin continuous films (15 to 125 nm thick) have been synthesized on silicon (100) substrates by room temperature pulsed laser deposition under vacuum followed by a post-deposition annealing, a route unexplored and yet not reported for SrRuO3 film growth. The presence of an interfacial Sr2SiO4 layer has been identified for films annealed at high temperature, and the properties of this interface layer as well as the properties of the SrRuO3 film have been analyzed and characterized as a function of the annealing temperature. The room temperature resistivity of the SrRuO3 films deposited by laser ablation at room temperature and post-annealed is 2000 μΩ·cm. A critical thickness of 120 nm has been determined above which the influence of the interface layer on the resistivity becomes negligible.  相似文献   

20.
In this work, we report a study of the optical properties measured through spectral transmission and spectroscopic ellipsometry in Ge:H and GeYSi1 − Y:H (Y ≈ 0.97) films deposited by low frequency (LF) PE CVD with hydrogen (H) dilution. The dilution was varied in the range of R = 20 to 80. It was observed that H-dilution influences in a different way on the interface and bulk optical properties, which also depend on incorporation of silicon. The films with low band tail characterized by its Urbach energy, EU, and defect absorption, αD, have been obtained in Ge:H films for R = 50 with EU = 0.040 eV and αD = 2 × 103 cm− 1 (hν ≈ 1.04 eV), and in GeYSi1 − Y:H films for R=75 with EU = 0.030 eV and αD = 5 × 102 cm− 1 (hν ≈ 1.04 eV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号