首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An aluminosilicate with the MCM-41 structure (AlMCM-41) was used as a host for the synthesis of cobalt sulfide nanoparticles. Cobalt sulfide nanoparticles were introduced in host by ion exchange and hydrothermal methods. Products (CoSAlMCM-41) were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), EDX, IR, BET and UV–vis spectroscopy. The results show that CoS nanoparticles encapsulated into channels of AlMCM-41 material by hydrothermal synthesis and they grow outside the mesopore AlMCM-41 matrix by ion-exchange methods. Absorption peaks at higher energy than the fundamental absorption edge of bulk CoS indicate quantum confinement effect in nanoparticles as a consequence of their small size. The absorption spectra show that the optical band gap for CoS nanoparticles by hydrothermal and ion-exchange methods are 3.73 and 4.89, respectively.  相似文献   

2.
A method with modifying tetraethyl orthosilicate (TEOS) with nickel species has been developed for the synthesis of mesoporous silica with high nickel content (11.8 wt.% of Ni or even higher). With the method, MCM-41-type materials were obtained with high BET surface area reaching 868 m2/g and pore volume up to 0.73 cm3/g. The materials were characterized by means of X-ray powder diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy, N2 adsorption, Fourier transform infrared and X-ray photoelectron spectroscopy. Nickel species were incorporated into the silica frameworks. The mesostructures still remain after activation using H2 at 773 K.  相似文献   

3.
In this investigation photocatalytic degradation of basic blue 9 or methylene blue (MB) as color pollutants was studied. Cobalt sulfide was supported on AlMCM-41 material using ion-exchange method. The results show that CoS/AlMCM-41 is an active photocatalyst. The catalyst is characterized by X-ray diffraction (XRD) UV–vis diffused reflectance spectra (UV–vis DRS) and scanning electron microscopy (SEM) techniques. The maximum effect of photodegradation was observed at 7 wt% CoS/AlMCM-41. Pseudo-first order reaction with k = 0.032 was observed for the photocatalytic degradation reaction. The effect of some parameters such as pH, amount of photocatalyst and initial concentration of dye were also examined. The effect of dosage of photocatalyst was studied in the range 0.04–1.2 g/L. It was seen that 0.8 g/L of photocatalyst is an optimum value for the dosage of photocatalyst. In the best conditions, the degradation efficiency was obtained 0.32 ppm for MB dye.  相似文献   

4.
The powder of γ − Fe2O3 nanoparticles was synthesized in microwave torch at atmospheric pressure from 0.05 sccm of Fe(CO)5 vapors in 670 sccm of argon. The optimization of the torch reactor design and deposition conditions allowed continual synthesis of γ − Fe2O3 nanoparticles at low power consumption. The synthesized powder was collected at the reactor walls and analyzed by TEM, X-ray diffraction and Raman spectroscopy without any further purification or treatment. The mean diameter of NPs, as observed by TEM, was 12 nm with a 90% confidence interval 5.5-22 nm.  相似文献   

5.
The solid-liquid extraction of Cu(II) from 0.33 M (Na+, H+)SO42− sulphate medium at 25 °C by calcined mesoporous materials type Si-MCM-41, impregnated by the acidic extractant 3-phenyl-4-benzoyl-isoxazol-5-one (HPBI), has been tested. The Si-MCM-41 material was impregnated by HPBI using the dry impregnation method. It was characterized by physico-chemical methods: N2-sorption, XRD, SEM and determination of the amount of HPBI in the solid. The extraction rate was determined as a function of pH and extractant concentration in the material. The extraction of Cu(II) into impregnated mesoporous material can reach 99%.  相似文献   

6.
This study explored the possibility of recovering waste powder from photonic industry into two useful resources, sodium fluoride (NaF) and the silica precursor solution. An alkali fusion process was utilized to effectively separate silicate supernatant and the sediment. The obtained sediment contains purified NaF (>90%), which provides further reuse possibility since NaF is widely applied in chemical industry. The supernatant is a valuable silicate source for synthesizing mesoporous silica material such as MCM-41. The MCM-41 produced from the photonic waste powder (PWP), namely MCM-41(PWP), possessed high specific surface areas (1082 m2/g), narrow pore size distributions (2.95 nm) and large pore volumes (0.99 cm3/g). The amine-modified MCM-41(PWP) was further applied as an adsorbent for the capture of CO2 greenhouse gas. Breakthrough experiments demonstrated that the tetraethylenepentamine (TEPA) functionalized MCM-41(PWP) exhibited an adsorption capacity (82 mg CO2/g adsorbent) of only slightly less than that of the TEPA/MCM-41 manufactured from pure chemical (97 mg CO2/g adsorbent), and its capacity is higher than that of TEPA/ZSM-5 zeolite (43 mg CO2/g adsorbent). The results revealed both the high potential of resource recovery from the photonic solid waste and the cost-effective application of waste-derived mesoporous adsorbent for environmental protection.  相似文献   

7.
An all-solution processed metal-oxide-semiconductor (MOS) capacitor structure containing gold (Au) nanoparticles (NPs) within HfO2 high-κ oxide was fabricated. The ultra-thin (~ 10 nm) HfO2 high-κ tunnel oxide layer was prepared by sol-gel process and showed good electrical properties, which were critical to superior memory property of the MOS structure. Au NPs with particle size of about 3.3 nm were synthesized by chemical reduction method and then self-assembled onto HfO2 tunnel oxide. Finally, a Si/HfO2/Au NPs/HfO2 memory structure was constructed after the substrate had been covered with a sol-gel-derived HfO2 control oxide layer (~ 13 nm). By utilizing high-quality HfO2 as tunnel oxide, the MOS structure containing Au NPs showed memory effect even at a low voltage of ± 3 V. Although its memory window was only 0.8 V by a swapping voltage between ± 5 V, the MOS showed desirable retention characteristics. Therefore, we have fabricated nanocrystal memory device with sol-gel derived HfO2 high-k tunnel oxide which are attractive for low operation voltage non-volatile memory applications.  相似文献   

8.
The purpose of this research was to synthesize and characterize gold-coated Fe3O4/SiO2 nanoshells for biomedical applications. Magnetite nanoparticles (NPs) were prepared using co-precipitation method. Smaller particles were synthesized by decreasing the NaOH concentration, which in our case this corresponded to 35 nm using 0.9 M of NaOH at 750 rpm with a specific surface area of 41 m2 g−1. For uncoated Fe3O4 NPs, the results showed an octahedral geometry with saturation magnetization range of 80–100 emu g−1 and coercivity of 80–120 Oe for particles between 35 and 96 nm, respectively. The magnetic NPs were modified with a thin layer of silica using Stober method. Small gold colloids (1–3 nm) were synthesized using Duff method and covered the amino functionalized particle surface. Magnetic and optical properties of gold nanoshells were assessed using Brunauer–Emmett–Teller (BET), vibrating sample magnetometer (VSM), UV–Vis spectrophotometer, atomic and magnetic force microscope (AFM, MFM), and transmission electron microscope (TEM). Based on the X-ray diffraction (XRD) results, three main peaks of Au (1 1 1), (2 0 0) and (2 2 0) were identified. The formation of each layer of a nanoshell is also demonstrated by Fourier transform infrared (FTIR) results. The Fe3O4/SiO2/Au nanostructures, with 85 nm as particle size, exhibited an absorption peak at ∼550 nm with a magnetization value of 1.3 emu g−1 with a specific surface area of 71 m2 g−1.  相似文献   

9.
Half-metallic Heusler material Co2FeAl0.5Si0.5 (CFAS) nano-particles (NPs) embedded in metal-oxide-semiconductor (MOS) structures with thin HfO2 tunneling and MgO control oxides were investigated. The CFAS NPs were prepared by rapid thermal annealing. The formation of well-controlled CFAS NPs on thin HfO2 tunneling oxide was confirmed by atomic force microscopy (AFM). Memory characteristics of CFAS NPs in MOS devices exhibited a large memory window of 4.65 V, as well as good retention and endurance times of 105 cycles and 109 s, respectively, demonstrating the potential of CFAS NPs as promising candidates for use in charge storage.  相似文献   

10.
The effect of reducing agents on the synthesis of Au(0) metallic nanoparticles (Au NPs) prepared in green solvent medium of β-d-glucose-water dispersions has been reported first. The different equivalent amounts of NaBH4 and pH values adjusted by NaOH were tested for the reduction of Au salt (HAuCl4·3H2O (hydrogen tetrachloroaurate (III) trihydrate) to obtain Au NPs. The type and the amount of reducing agent and the pH of the solution affected the size and morphology of the NPs. Addition of 4 equivalents of NaBH4 produced homogeneously dispersed 5.3 nm (σ = 0.7) diameter particles. Excess addition of NaBH4 caused the NPs to settle down as the precipitate forming mesh or wire structure. When salt was reduced by the addition of NaOH (pH = 8.0) the particles were larger (14.2 nm) and less homogeneous (σ = 2.8). At pH = 12.2 the NPs settled at the bottom of the vial when preparation was left overnight. The wire and mesh like structures were obtained at higher pH = 12.2.  相似文献   

11.
A. Berkó  A.M. Kiss  F. Šutara 《Vacuum》2007,82(2):125-129
Ar+ assisted carbidization of Mo nanoparticles supported on TiO2 (1 1 0) is studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). In order to activate the diffusion of carbon into the bulk of Mo nanoparticles we applied Ar ions (1 keV) during the exposure of C2H4. XPS exhibited that the decomposition of C2H4 at 850 K accompanied by ion bombardment results in an almost complete carbidization of nanocrystalline Mo while this treatment performed without ion bombardment results only in the carbidization of the particle surface. The modification of the crystallinity of the Mo-carbide particles was deduced from STM measurements.  相似文献   

12.
The synthesis of magnetic NiFe2O4@AlMCM-41-Cu2O core-shell as a new class of visible light driven photocatalyst was suggested. The magnetic NiFe2O4 core was prepared by solvothermal method. The intermediate AlMCM-41 shell was prepared by the method of liquid crystal templating mechanism and subsequently cuprous oxide (Cu2O) nanoparticles (NPs) were synthesized in NiFe2O4@AlMCM-41core-shell via colloidal chemistry approach. The properties of prepared magnetic core-shell were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen adsorption–desorption measurement and vibration sample magnetometer (VSM). Based on EDX results, the weight percentage (wt%) of NiFe2O4 core, MCM-41 shell and Cu2O NPs were calculated to be 68.89, 30.55 and 0.56%, respectively. It consisted of mesoporous structure with a surface area of 687.00 m2 g?1, an average pore size of 2.95 nm and possessed excellent magnetic properties of 4.74 emu g?1. The TEM results indicated that the NiFe2O4 as core were regular spheres with diameter of 68 nm, and the average thickness of AlMCM-41 shells was ~35 nm. The particles size of Cu2O incorporated in core-shell was less than 5 nm. The photocatalytic activity was evaluated under visible light irradiation using the removal of methylene blue (MB) dye as a model reaction. The removal rate of MB achieved up to 90% after 60 min under visible light irradiation, and the NiFe2O4@AlMCM-41-Cu2O can be recycled and reused.  相似文献   

13.
A facile sonochemical approach was applied for the large scale synthesis of iron oxide magnetic nanoparticles (NPs) using inexpensive and non-toxic metal salts as reactants. The as-prepared magnetic iron oxide NPs has been characterized by XRD, TEM, EDS, and VSM. X-ray diffraction (XRD) and EDS analysis revealed that Fe3O4 NPs have been successfully synthesized in a single reaction by this simple method. Transmission electron microscopy (TEM) data demonstrated that the particles were narrow range in size distribution with 11 nm average particle size. Moreover, TEM measurements also show that the synthesized nanoparticles are almost spherical in shape. The magnetization curve from vibrating sample magnetometer (VSM) measurement shows that as-synthesized NPs were nearly superparamagnetic in magnetic properties with very low coercivity, and magnetization values were 80 emu/g, which is very near to the bulk value of iron oxide. The estimated value of mass susceptibility of as-synthesized nanoparticles is Xg = 5.71 × 10− 4 m3/kg.  相似文献   

14.
Nanocrystalline TiO2(B) powder was obtained by the hydrolysis of an ionic liquid like titania precursor (the triethylammonium salt of hexafluorotitanate) induced by the addition of boric acid in the presence of dopamine. The entire synthetic procedure was carried out at ambient pressure and low temperature (85 °C). X-ray diffraction, high resolution transmission electron microscopy and selected area electron diffraction characterization techniques confirmed the formation of the TiO2(B) phase. Moreover, Raman spectroscopy indicated that TiO2(B) was the major component, although it also revealed the presence of anatase as a minor component (< 10%). The as-prepared material has a mesoporous architecture with high specific surface area (235 m2 g− 1).  相似文献   

15.
Metallic V nanoparticles (NPs) were formed in silica glass by implantation with V+ ions of 60 keV to a fluence of 1.0 × 1017 ions/cm2. Annealing in oxygen gas at 800 °C transformed the metallic NPs to oxide NPs. While the mean diameter of the metal V NPs was 8.4 nm in the as-implanted state, the diameters steeply increased during oxidation, with some exceeding 100 nm. Since at least 15 different composition phases, such as V2O3, V3O7, V6O13, V9O17, etc., are known for vanadium oxides, identification of the oxide phase of the NPs was not easy. X-ray diffraction (XRD) was not a powerful tool for phase identification of the NPs, because the diffraction peaks were broad due to the nanometric sizes of the particles and readily shift due to stress effects. The temperature dependence of the optical absorption spectrum was measured. The observed spectra were almost unchanged between 3.3 and 370 K. Combining the spectral result and the XRD results, the candidates were narrowed down to three phases, V2O5, V4O9, and V7O13, from the 15 candidates. Among the three, the V2O5 phase is the most probable because the absorption spectrum and the oxygen partial pressure for its formation were both consistent.  相似文献   

16.
N. Umeda  N. Kishimoto 《Vacuum》2008,83(3):645-648
Thermal annealing effects on Zn+ ion-implanted silica glass (a-SiO2) have been studied in order to control void formation. Void formation in a-SiO2 with Zn+ ion implantation and subsequent oxidation has been observed using transmission electron microscopy (TEM). Zn+ ions of 60 keV were implanted into a-SiO2 to a fluence of 1.0 × 1017 ions/cm2. After the implantation, thermal annealing at 600 or 700 °C for 1 h in oxygen gas was conducted. In as-implanted state, metal Zn nanoparticles (NPs) of 10-15 nm in diameter are formed in the depth region around the projected range. The size of the Zn nanoparticles increases after the annealing at 600 °C in oxygen gas. Annealing in oxygen gas at 700 °C for 1 h caused two processes: (1) the migration of Zn atoms which formed Zn NPs in as-implanted state to the surface of the a-SiO2 substrate and (2) the transformation to the oxide phase on the substrate. The transportation of Zn NPs to the surface leaves voids of 10-25 nm in diameter inside the a-SiO2. These results indicate that the oxidation at 700 °C for 1 h causes the migration of Zn atoms to the surface without diffusion and recombination of vacancies which form the voids.  相似文献   

17.
Mn nanoparticles are prepared by arc discharge technique. MnO, α-Mn, β-Mn, and γ-Mn are detected by X-ray diffraction, while the presence of Mn3O4 and MnO2 is revealed by X-ray photoelectron spectroscopy. Transmission electron microscopy observations show that most of the Mn nanoparticles have irregular shapes, rough surfaces and a shell/core structure, with sizes ranging from several nanometers to 80 nm. The magnetic properties of the Mn nanoparticles are investigated between 2 and 350 K at magnetic fields up to 5 T. A magnetic transition occurring near 43 K is attributed to the formation of the ferrimagnetic Mn3O4. The coercivity of the Mn nanoparticles, arising mainly from Mn3O4, decreases linearly with increasing temperature below 40 K. Below the blocking temperature TB ≈ 34 K, the hysteresis loops exhibit large coercivity (up to 500 kA/m), owing to finite size effects, and irreversibility in the loops is found up to 4 T, and magnetization is not saturated up to 5 T. The relationship between structure and the magnetic properties are discussed.  相似文献   

18.
The incorporation of Ag nanoparticles on mesoporous silica as the supporting material and their catalysis for oleic acid hydrogenation were described in this study. The template removal and Ag nanoparticle incorporation were concurrently taken place in the novel glow discharge in a solution, namely solution plasma process under controlled conditions. With only 15 min of discharge time, Ag nanoparticles were incorporated on the mesoporous silica matrix confirmed by the evidences of XRD and TEM and the template inside mesopores was mostly removed confirmed by FTIR spectra. The hydrogenation catalysis of oleic acid was preliminarily tested using UV-VIS spectroscopy after oxidation using permanganate ions (MnO4). It was found that the conversion was observed to be 12.83% in the butanol system and reached to 90.56% in ethanol.  相似文献   

19.
A chemiluminescent dual signal amplification strategy for the determination of α-fetoprotein (AFP) was proposed based on a sandwich immunoassay format. Monoclonal antibody of AFP immobilized on the gold nanoparticles doped mesoporous SiO2 (Au/SiO2) were prepared and used as a primary antibody. Horseradish peroxidase (HRP) and HRP-labeled secondary antibody (Ab2) co-immobilized into the mesoporous SiO2 nanoparticles (HRP-Ab2/SiO2) were used as the labeled immunological probe. Due to the high ratio surface areas and pore volumes of the mesoporous SiO2, not only the amount of AFP monoclonal antibody but also the amount of the modified HRP and Ab2 in HRP-Ab2/SiO2 were largely increased. Thus the chemiluminescent signal was amplified by using the system of luminol and H2O2 under the catalysis of HRP. Under the optimal conditions, two linear ranges for AFP were obtained from 0.01 to 0.5 ng mL−1 and 0.5 to 100 ng mL−1 with a detection limit of 0.005 ng mL−1 (3σ). The fabricated signal amplification strategy showed an excellent promise for sensitive detection of AFP and other tumor markers.  相似文献   

20.
CdS nanoparticles (NPs) were prepared by exposing a hybrid ureasilicate gel containing cadmium (II) ions to H2S gas at room temperature. Additional component (tetraethoxysilane) was introduced during the synthesis in order to improve the mechanical properties of the host matrix. The obtained material was subsequently subjected to an annealing treatment under an argon atmosphere at temperatures that varied from 43 to 102 °C. The size of the embedded NPs increased with thermal annealing. The optical absorption spectroscopy, photoluminescence (PL) and transmission electron microscopy (TEM) measurements confirmed the formation of CdS nanoparticles (NPs) exhibiting quantum confinement effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号