首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Composites of carbon nanotubes with attached carboxylic groups (c-MWCNTs) and water-soluble externally doped sulfonated polyaniline (ED-SPANI) were prepared by solution mixing of c-MWCNT and ED-SPANI aqueous colloids. Fourier-transform infrared spectroscopy, Raman spectroscopy, ultraviolet–visible (UV–Vis) absorption spectroscopy, field-emission scanning and high-resolution transmission electron microscopy were used to characterize their structure and morphology. Raman and UV–Vis spectra revealed the presence of electrostatic interaction between the C–N+ species of the ED-SPANI and the COO species of the c-MWCNTs. The addition of c-MWCNT to ED-SPANI can improve its thermal stability. The conductivity of 3 wt.% ED-SPANI/c-MWCNT composites at room temperature is sixteen times higher than that of ED-SPANI. These results demonstrate that the addition of a small number of c-MWCNTs to an ED-SPANI matrix can form a conducting network in well dispersed composites, thus increasing their electrical conductivity.  相似文献   

2.
Multi-walled carbon nanotube (MWCNT)-filled silicone rubber (SR) composites were prepared by solvent evaporation method, with different MWCNT concentrations from 0.5 wt% to 6.5 wt%. Alternating current (AC) electrical properties of samples with interdigital electrodes were measured in the frequency range from 20 Hz to 1 MHz. Impedance spectroscopy analysis reveals a frequency-independent percolation transition between 2.0 wt% and 2.9 wt%. Samples above the percolation threshold exhibit more regular variations: the magnitude of impedance decreases gradually with frequency in the low-frequency range, and then decreases as a power law beyond a critical frequency, with the exponent in a limited range indicating the AC universality of disordered solids; the plots of real and imaginary parts of impedance fit semicircles well in the complex plane, implying semiconductive behaviours. Over the concentration range tested, a multi-stage circuit model consisting of resistor–capacitor (RC) networks is proposed to simulate the electrical responses of samples. The validity of the modelling approach is verified by comparing simulation results to experimental results, and is further supported by the analysis of the characteristic frequency. The use of equivalent circuits in modelling provides a further insight into the conducting network inside nanocomposites and more valuable guidance for the design of correlative devices.  相似文献   

3.
An innovative method has been successfully developed to improve the electrical conductivity of polyamide 6/polystyrene (PA6/PS) blends in this paper. PA6/PS blends containing multi-walled carbon nanotubes (MWCNTs) are prepared by the radical polymerization of styrene in the presence of ?-caprolactam (CL) and MWCNTs, followed by the in-situ anionic ring-opening polymerization of CL. In the resulted PA6/PS blends, MWCNTs are selectively located at the interface of PA6 and PS. Because the interface of 0.5 and 1.0 wt.% MWCNTs filled blends with PA6/PS weight ratio of 70/30 is continuous, a MWCNTs conductive pathway is formed in these two blends, which results in a decrease of volume resistivity by about 9 orders of magnitude.  相似文献   

4.
Morphology, electrical properties and conductive mechanisms of polyamide 6/polypropylene/muti-walled carbon nanotubes (PA6/PP/MWNTs) composites with varied compositions and different blending sequences were investigated. The MWNTs were found to be located preferentially in the PA6 phase in the composites, whatever the PA6 was continuous or dispersed phase. While the incorporation of MWNTs changed the dispersed PA6 phase from spherical to elongated or irregular shape. The PA6/PP/MWNTs (20/80/4) composite with a dispersed PA6 phase exhibited a higher electrical conductivity in comparison with the PA6/PP/MWNTs (50/50/4) composite which has a co-continuous phase and exhibits double percolation. This was due to the formation of a conductive MWNTs networks in the PA6/PP/MWNTs (20/80/4) composite as proved by means of field emission scanning electron microscopy and rheological measurements. The morphology and electrical properties of the PA6/PP/MWNTs (20/80/4) composites were significantly influenced by blending sequences. When blending 3.9 phr MWNTs with a pre-mixed PA6/PP/MWNTs (20/80/0.1) composite, the dispersed PA6 phase formed an elongated structure, which was beneficial to the electrical properties.  相似文献   

5.
Untreated and acid-treated multi-walled carbon nanotubes (MWNT) were used to fabricate MWNT/epoxy composite samples by sonication technique. The effect of MWNT addition and their surface modification on the mechanical properties were investigated. Modified Halpin–Tasi equation was used to evaluate the Young’s modulus and tensile strength of the MWNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. There was a good correlation between the experimentally obtained Young’s modulus and tensile strength values and the modified Halpin–Tsai theory. The fracture surfaces of MWNT/epoxy composite samples were analyzed by scanning electron microscope.  相似文献   

6.
Mechanical reinforcement of polymer matrices loaded by carbon nanotubes is expected to benefit by both the high aspect ratio and the very high modulus of such nanofillers and, consequently, it depends not only by their content within the hosting system but also by the state of dispersion. This work analyses the effect on the bending modulus of dispersed multi-walled carbon nanotube (MWCNT) into an epoxy system. Results indicate that reinforcement efficiency is characterised by two limiting behaviours whose transition region coincides with the development of a percolative network of nanotubes. Well below the percolation threshold, the carbon nanotubes, contribute to the composite modulus with their exceptional modulus (in this case a value of 1.780 TPa was found), whereas it dramatically decreases above this limit due to the reduction of the effective aspect ratio and the micron sized cluster formation. An estimate of the maximum reinforcement induced by carbon nanotubes has been proposed based on percolation and stress transfer theory for large aspect ratio fillers.  相似文献   

7.
The piezoresistance of a multi-walled carbon nanotube filled silicone rubber composite under uniaxial pressure was studied. The experimental results show that the active carboxyl radical on multi-walled carbon nanotubes can effectively improve the homogeneous distribution and alignment of conductive paths in the composite. As a result, the composite presented positive piezoresistance with improved sensitivity and sensing linearity for pressure, both of which are key parameters for sensor applications.  相似文献   

8.
Highly-oriented polyoxymethylene (POM)/multi-walled carbon nanotube (MWCNT) composites were fabricated through solid hot stretching technology. With the draw ratio as high as 900%, the oriented composites exhibited much improved thermal conductivity and mechanical properties along the stretching direction compared with that of the isotropic samples before drawing. The thermal conductivity of the composite with 11.6 vol.% MWCNTs can reach as high as 1.2 W/m K after drawing. Microstructure observation demonstrated that the POM matrix had an ordered fibrillar bundle structure and MWCNTs in the composite tended to align parallel to the stretching direction. Wide-angle X-ray diffraction results showed that the crystal axis of the POM matrix was preferentially oriented perpendicular to the draw direction, while MWCNTs were preferentially oriented parallel to the draw direction. The strong interaction between the POM matrix and the MWCNTs hindered the orientation movement of molecules of POM, but induced the orientation movement of MWCNTs.  相似文献   

9.
This study examined the effects of multi-walled carbon nanotube (CNT) dispersion on stress-strain behaviors of poly-ether-ether-ketone (PEEK) at room temperature. Tensile test specimens containing 9 wt.% and 15 wt.% of CNT were fabricated using injection molding. Results of focused ion beam (FIB) observations show that many CNTs in the CNT/PEEK composite are aligned longitudinally. Although the PEEK stress-strain behavior is almost linear up to 1.5% strain, the stress-strain curves of CNT/PEEK composites exhibit considerable nonlinear and hysteretic behaviors from extremely low strain (<0.1%) under both tensile and compressive loading. The experimental results suggest that the viscoelastic deformation effects on nonlinear and hysteresis behaviors are not strong below 1.5% strain. Presumably, the slippage at the CNT-PEEK interface occurs with increasing applied stress because of poor interfacial load-transfer capability.  相似文献   

10.
Along with carbon nanotubes (CNT) morphology, impurity, and functionalization, polymer curing cycle is another important factor in determining the mechanical properties of the CNT/polymer composite samples. This work investigates the effect of two different curing cycles on mechanical and thermo-mechanical properties of the nanotube in the composite in order to optimize the curing condition in term of time and temperature. Nanocomposite samples were prepared by mixing multi-wall carbon nanotubes with epoxy resin using sonication method. The mechanical and viscoelastic properties of the resulting composite samples were evaluated by performing tensile and dynamic mechanical thermal analyses (DMTA) test. The results indicate that the mechanical and viscoelastic properties of pure epoxy and composite samples have been affected by the condition curing process. Concerning viscoelastic modeling, the COLE–COLE diagram has been plotted by the result of DMTA tests. These results show a good agreement between the Perez model and the viscoelastic behavior of the composite.  相似文献   

11.
孙晓刚 《新型炭材料》2007,22(4):375-378
将不同质量分数的碳纳米管和环氧树脂充分混合,制成复合吸波涂料并涂覆在铝板上制成吸波涂层。采用TEM对碳纳米管的形貌进行观察。使用反射率扫频测量系统HP8757E标量网络分析仪检测复合材料的吸波性能。结果表明,复合材料在2GHz~18GHz均有良好的吸波性能。碳纳米管加载质量分数为8%和10%时,复合材料吸波性能最佳。8%碳纳米管加载量,峰值最大,达到~22.55dB,波峰出现在12.32GHz,带宽分别为2.56GHz(R〈-8dB)和4.00GHz(R〈-5dB)。10%碳纳米管添加量,带宽最大,分别达到2.80GHz(R〈-8dB)和7.00GHz(R〈-5dB),波峰出现在13.67GHz,峰值为-14.59dB。  相似文献   

12.
We are presenting a method of synthesizing three-dimensional self-assembled multi-walled carbon nanotube (MWCNT) nanopaper on hydrophilic polycarbonate membrane. The process is based on the very well-defined dispersion of nanotube and controlled pressure vacuum deposition procedure. The morphology and structure of the nanopaper are characterized with scanning electronic microscopy (SEM) over a wide range of scale sizes. A continuous and compact network observed from the microscopic images indicates that the MWCNT nanopaper could have highly conductive property. As a consequence, the sensing properties of conductive MWCNT nanopaper are characterized by functions of temperature and water content. Meanwhile, in combination with shape-memory polymer (SMP), the conductive MWCNT nanopaper facilitates the actuation in SMP nanocomposite induced by electrically resistive heating. Furthermore, the actuating capability of SMP nanocomposite is utilized to drive up a 5-gram mass from 0 to 30 mm in height.  相似文献   

13.
In this paper, electrical and mechanical properties of Poly (p-phenylene sulfide) (PPS)/multi-wall carbon nanotubes (MWNTs) nanocomposites were reported. The composites were obtained just by simply melt mixing PPS with raw MWNTs without any pre-treatment. The dispersion of MWNTs and interfacial interaction were investigated through SEM &TEM and Raman spectra. The rheological test and crystallization behavior were also investigated to study the effects of MWNTs concentration on the structure and chain mobility of the prepared composites. Though raw MWNTs without any pre-treatment were used, a good dispersion and interaction between PPS and MWNTs have been evidenced, resulting in a great improvement of electrical properties and mechanical properties of the composites. Raman spectra showed a remarkable decrease of G band intensity and a shift of D bond, demonstrating a strong filler–matrix interaction, which was considered as due to π–π stacking between PPS and MWNTs. The storage modulus (G′) versus frequency curve presented a plateau above the percolation threshold of about 2–3 wt% with the formation of an interconnected nanotube structure, indicative of ‘pseudo-solid-like’ behavior. Meanwhile, a conductive percolation threshold of 5 wt% was achieved and the conductivity of nanocomposites increased sharply by several orders of magnitude. The difference between electrical and rheological percolation threshold, and the effect of critical percolation on the chain mobility, especially on crystallization behavior of PPS, were discussed. In summary, our work provides a simple and fast way to prepare PPS/MWNTs nanocomposites with good dispersion and improved properties.  相似文献   

14.
Yong Tang 《Materials Letters》2010,64(22):2513-2516
A unique concept of making a paper from few-layer graphene (FLG) and multi-walled carbon nanotube (MWCNT) was explored. In the FLG/MWCNT paper, an entangled network of MWCNTs was formed to bridge the gap between FLG. The ratio of FLG and MWCNT in the paper was varied from FLG-dominated to MWCNT-dominated in order to study the efficiency in improving electrical conductivity. At a high weight fraction of MWCNTs in the paper, MWCNTs were oriented between FLG. A synergistic effect on electrical conductivity between two-dimensional FLG and one-dimensional MWCNT was demonstrated in the hybrid paper.  相似文献   

15.
In this report, a novel approach was developed to graft polyamide 6 (PA6) onto the surface of multi-walled carbon nanotubes (MWNTs). MWNTs were covalently functionalized with copoly(styrene-maleic anhydride) (SMA) via free radical polymerization. SMA functionalized MWNTs (MWNTs-g-SMA) were then used as a macromolecular activator of anionic ring-opening polymerization of ε-caprolactam thus to graft PA6 onto the surface of MWNTs. Raman, FTIR spectroscopy and FETEM were used to identify the covalently grafting SMA and PA6 onto the surface of MWNTs. Additionally, the dispersibility of PA6 functionalized MWNTs (MWNTs-g-PA6) in formic acid and melted ε-caprolactam was also demonstrated.  相似文献   

16.
Poly(trimethylene terephthalate) [PTT]/multiwalled carbon nanotube [MWCNT] composites having varying amounts of MWCNTs were fabricated with an aim to investigate the potential of such composites as an effective light weight electromagnetic interference (EMI) shielding material in the frequency range of 12.4-18 GHz (Ku-band). PTT/MWCNT composite with shielding effectiveness (SE) of 36-42 dB was obtained at 10% (w/w) MWCNT loading. Shielding mechanism was studied by resolving the total SE into absorption (SEA) and reflection loss (SER). PTT/MWCNT composite showed absorption dominated shielding; thus it can be used as microwave, radar absorbing and stealth material. The effect of MWCNT loadings on electrical conductivity (σ) and dielectric properties of PTT and the correlation among conductivity, tan δ, absorption loss and reflection loss were also studied.  相似文献   

17.
Dense silicon nitride (Si3N4) composites with various amounts (0-8.6 vol%) of multi-walled carbon nanotubes (MWCNTs) are electrically characterised by combining macroscopic dc-ac and nanoscale conductive scanning force microscopy (C-SFM) measurements. In this way, a coherent picture of the dominant charge transport mechanisms in Si3N4/MWCNTs composites is presented. A raise of more than 10 orders of magnitude in the electrical dc conductivity compared to the blank specimen is measured for MWCNTs contents above 0.9 vol%. Semiconductor and metallic-like behaviours are observed depending on both the temperature and the MWCNTs content. Macroscopic measurements are further supported at the nanoscale by means of C-SFM. The metallic-type conduction is associated to charge transporting along the nanotube shells, whereas the semiconductor behaviour is linked to hopping conduction across nanotube-nanotube contacts and across intrinsic defect clusters within the nanotubes.  相似文献   

18.
A simplified and an eco-friendly approach to develop polychloroprene rubber composites with high electrical conductivity is reported. The usage of room temperature ionic liquid, 1-butyl 3-methyl imidazolium bis(trifluoromethylsulphonyl)imide and a low concentration (5 phr) of commercial grade multi-walled carbon nanotubes (MWCNTs) in polychloroprene rubber exhibited an electrical conductivity of 0.1 S/cm with a stretchability >500%. The physical (cation-pi/pi-pi) interaction between the ionic liquid and the MWCNTs is evidenced by Raman spectroscopy. Transmission electron microscopy images exhibit an improved dispersion of the BMI modified tubes in matrix at various magnification scales. The dependency of dynamic properties on the concentration of ionic liquid at constant loading of nanotubes supports the fact that ionic liquid assists in the formation of filler-filler networks. The tensile modulus of 3 phr loaded modified MWCNT/CR composite is increased by 50% with regard to that of the unmodified MWCNT/CR composite. Mooney-Rivlin plot displays the existence of rubber-filler interactions.  相似文献   

19.
High conductivity and solubility of polypyrrole (PPy)/multi-walled carbon nanotubes (MWCNT) composites has been successfully synthesized by in situ chemical oxidation polymerization using various concentrations of cationic polyelectrolyte poly(styrenesulfonate) (PSS) and ammonium peroxodisulfate (APS). Raman spectroscopy, FTIR, EPR, FESEM and HRTEM were used to characterize their structure and morphology. These images of FESEM and HRTEM showed that the fabricated PPy/MWCNT composites are one-dimensional core-shell structures with the average thickness of the PPy/MWCNT composites without PSS is about 250 nm and considerably decreases to 100–150 nm by adding the PSS content. The results of Raman spectrum, FTIR and UV–Vis indicate the synthesized PPy/MWCNT composites are in the doped state. The conductivities of PPy/MWCNT composites synthesized with the weight ratio of PSS/pyrrole monomer at 0.5 are about two times of magnitude higher than that of PPy/MWCNT composites without PSS. These results are perhaps due to the part of cationic electrolyte served as a dopant can be incorporated to the PPy structure to improve the conductivity of fabricated PPy/MWCNT composites.  相似文献   

20.
A novel method to prepare the carbon nanotube (CNT)/linear low density polyethylene (LLDPE) composite is demonstrated. The combination of free radical reaction and water-crosslinking reaction to prepare the CNT/LLDPE composite was characterized by Raman and FT-IR. Mechanical properties and thermal stability of the composite were significantly improved after silane modification and water-crosslinking reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号