首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the influence of a low-growth-rate InN buffer layer on structural and optical properties of wurtzite nanocrystalline InN films deposited on Si(111) substrates by reactive radio-frequency sputtering. The deposition conditions of the InN buffer layer were optimized in terms of morphological and structural quality, leading to films with surface root-mean-square roughness of ~ 1 nm under low-growth-rate conditions (60 nm/h). The use of the developed InN buffer layer improves the crystalline quality of the subsequent InN thick films deposited at high growth rate (180 nm/h), as confirmed by the narrowing of X-ray diffraction peaks and the increase of the average grain size of the layers. This improvement of the structural quality is further confirmed by Raman scattering spectroscopy measurements. Room temperature PL emission peaking at ~ 1.58 eV is observed for InN samples grown with the developed buffer layer. The crystal and optical quality obtained for InN films grown on Si(111) using the low-growth-rate InN buffer layer become comparable to high-quality InN films deposited directly on GaN templates by RF sputtering.  相似文献   

2.
Ultra thin films of pure β-Si3N4 (0001) were grown on Si (111) surface by exposing the surface to radio- frequency nitrogen plasma with a high content of nitrogen atoms. Using β-Si3N4 layer as a buffer layer, GaN epilayers were grown on Si (111) substrate by plasma-assisted molecular beam epitaxy. The valence band offset (VBO) of GaN/β-Si3N4/Si heterojunctions is determined by X-ray photoemission spectroscopy. The VBO at the β-Si3N4 / Si interface was determined by valence-band photoelectron spectra to be 1.84 eV. The valence band of GaN is found to be 0.41 ± 0.05 eV below that of β-Si3N4 and a type-II heterojunction. The conduction band offset was deduced to be ~ 2.36 eV, and a change of the interface dipole of 1.29 eV was observed for GaN/β-Si3N4 interface formation.  相似文献   

3.
《Thin solid films》2006,494(1-2):69-73
The refractive index and optical absorption of wurzite InN epilayers grown on Si(111) substrates with a β-Si3N4/AlN(0001) double-buffer by nitrogen-plasma-assisted molecular-beam epitaxy were studied by employing spectroscopic ellipsometry (SE). The crystalline quality of the InN epilayers were investigated by cross-sectional transmission electron microscopy, X-ray diffraction, and scanning electron microscopy. SE results analyzed by the Adachi's model for the dielectric function show that the optical absorption edge of InN varies in the range of 0.76–0.83 eV depending on the carrier concentration, which in turn can be adjusted by the thickness of the AlN buffer layer.  相似文献   

4.
We report on the formation and the structural characterization of nanocrystalline Si/SiC (nc-Si/SiC) multilayers on Si(100) by hot filament assisted chemical vapor deposition using CH3SiH3 gas pulse jets. Si rich amorphous SiC (a-Si1  xCx, ~ 0.33) was initially grown at the substrate temperature (Ts) of 600 °C with heating a hot filament at ~ 2000 °C. The following crystalline SiC layers were grown at Ts = 850 °C without utilizing a hot filament. When the a-Si1  xCx layer was ultrathin (< 2 nm) on Si(100), this a-Si1  xCx layer was transformed to a single epitaxial SiC layer during the subsequent SiC growth process. The Si{111} faceted pits were formed at the SiC/Si(100) interface due to Si diffusion processes from the substrate. When the thickness of the initial a-Si1  xCx layer was increased to ~ 5 nm, a double layer structure was formed in which this amorphous layer was changed to nc-Si and nc-SiC was grown on the top resulting in the considerable reduction of the {111} faceted pits. It was found that nc-SiC was formed by consuming the Si atoms uniformly diffused from the a-Si1 − xCx layer below and that Si nanocrystals were generated in the a-Si1  xCx layers due to the annealing effect during further multilayer growths.  相似文献   

5.
Wide optical bandgap p-type nanocrystalline silicon carbide (p-nc-SiC) films deposited by hot-wire chemical vapor deposition were used as window layers in n-type crystalline Si heterojunction (HJ) solar cells. The effect of H2 flow rates on the material properties of p-nc-SiC films was investigated by X-ray diffractometer and Raman spectroscopy. Moreover, the optical and electrical properties, such as optical bandgap (Eg), dark conductivity, and activation energy (Ea), of p-nc-SiC films were also measured. It was found that H2 flow rates played an important role in forming of p-nc-SiC films and increasing the Eg and decreasing the Ea of p-nc-SiC films. Moreover, the effect of hydrogenation process of the amorphous Si buffer layer on solar cell characteristics was investigated. After the deposition and hydrogenation parameters were optimized, the Si HJ solar cells with the open-circuit voltage of 0.59 V, short-circuit current density of 38.06 mA/cm2, fill factor of 62.03%, and the conversion efficiency of 14.09% could be obtained.  相似文献   

6.
A series of InN thin films was grown on sapphire substrates via plasma-assisted molecular beam epitaxy (PA-MBE) with different nitrogen plasma power. Various characterization techniques, including Hall, photoluminescence, Raman scattering and Rutherford backscattering, have been employed to study these InN films. Good crystalline wurtzite structures have been identified for all PA-MBE grown InN films on sapphire substrate, which have narrower XRD wurtzite (0002) peaks, showed c-axis Raman scattering allowed longitudinal optical (LO) modes of A1 and E1 plus E2 symmetry, and very weak backscattering forbidden transverse optical (TO) modes. The lower plasma power can lead to the lower carrier concentration, to have the InN film close to intrinsic material with the PL emission below 0.70 eV. With increasing the plasma power, high carrier concentration beyond 1 × 1020 cm− 3 can be obtained, keeping good crystalline perfection. Rutherford backscattering confirmed most of InN films keeping stoichiometrical In/N ratios and only with higher plasma power of 400 W leaded to obvious surface effect and interdiffusion between the substrate and InN film.  相似文献   

7.
ZnO films with improved crystallinity were grown on a Si (111) substrate by a two-step growth process using low-temperature ZnO buffer layers. The effect of the ambient gas during the temperature elevation and the in-situ thermal annealing after the growth of the low-temperature buffer layers on the optical and structural properties of the films was investigated by X-ray diffraction (XRD), photoluminescence, and transmission electron microscopy. The use of argon as the ambient gas during the thermal treatment of the buffer layer leads to the enhancement of the (0002) diffraction peak intensity at 2θ ∼ 34.4° and the reduction of the full width at half maximum value in the XRD rocking curve, which means that well-defined and c-axis oriented ZnO film was obtained. The relationship between the thickness of the SiO2 layer between the ZnO buffer layers and Si substrates and the structural and optical properties of the ZnO films is discussed.  相似文献   

8.
Crystalline silicon carbide thin layers were grown on a p-type Si(1 0 0) substrate by pulsed laser deposition (PLD) using KrF excimer laser at λ=248 nm from a 6H-SiC hot-pressed target. The target “SiC” used to elaborate our SiC films is realized from a mixture of 1SiO2 with 3C (carbon) “1SiO2+3C” heated in an oven at 2500 °C (the target was a hot-pressed material and supplied by Goodfellow). The morphological, structural and optical properties of SiC layers were investigated by scanning electronic microscopy (SEM), high-resolution X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS) and UV-visible spectrophotometer. XRD analysis of the target showed that this latter is a hexagonal structure (6H-SiC). The XRD pattern shows that a 1.6 μm crystalline SiC layer was formed. In addition, a SIMS analysis gives a ratio Si/C of the thin SiC layer around 1.15 but the ratio Si/C of the target was found equal to 1.06, whereas one should have 1.0. This is due to the degree of the sensitivity of the SIMS technique and due to the higher ionization efficiency of Si compared to C atoms, all these which give different ratios. It is known that the PLD technique reproduces the same macroscopic property (optical, mechanical, structural, etc.) of the target. An optical gap (EGap) of the SiC layer of about 2.51 eV was obtained by reflectance measurement. Finally, a crystalline thin SiC layer of 1.6 μm was elaborated using PLD method at low-temperature deposition.  相似文献   

9.
The Pb(Zr0.80Ti0.20)O3 (PZT) thin films with and without a PbO buffer layer were deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by radio frequency (rf) magnetron sputtering method. The PbO buffer layer improves the microstructure and electrical properties of the PZT thin films. High phase purity and good microstructure of the PZT thin films with a PbO buffer layer were obtained. The effect of the PbO buffer layer on the ferroelectric properties of the PZT thin films was also investigated. The PZT thin films with a PbO buffer layer possess better ferroelectric properties with higher remnant polarization (Pr = 25.6 μC/cm2), and lower coercive field (Ec = 60.5 kV/cm) than that of the films without a PbO buffer layer (Pr = 9.4 μC/cm2, Ec = 101.3 kV/cm). Enhanced ferroelectric properties of the PZT thin films with a PbO buffer layer is attributed to high phase purity and good microstructure.  相似文献   

10.
Single-crystalline layers of GaN and related alloys such as AlGaN and InGaN were grown on Al2O3 (0001) substrates by radio-frequency magnetron sputter epitaxy. The crystalline structures of these layers were studied as functions of substrate temperature, N2 composition ratio in N2/Ar mixture source gas and gas pressure during the growth. Surface structure of GaN layer depended on Ga/N ratio in flux density, and nitrogen-rich growth condition resulted in pyramid-type facet structure whereas Ga-rich growth produced flat surface. The crystalline quality of GaN layer improved at relatively low N2 composition ratios, and the GaN layer grown at 30% N2 condition was transparent and colorless. AlxGa1−xN layers with x = 0.06-0.08 and InxGa1−xN layers with x = 0.45-0.5, were obtained at 30-40% and 30-50% N2 composition ratios, respectively. The AlN and InN molar fractions in these layers were considerably different from Al and In molar fractions in starting metal alloys (x = 0.15 in both AlxGa1−x and InxGa1−x alloys).  相似文献   

11.
Highly c-axis oriented ZnO thin films were grown on Si (100) substrates with Zn buffer layers. Effects of the Zn buffer layer thickness on the structural and optical qualities of ZnO thin films were investigated for the ZnO films with the buffer layers 90, 110, and 130 nm thick using X-ray diffraction (XRD), photoluminescence (PL) and atomic force microscopy (AFM) analysis techniques. It was confirmed that the quality of a ZnO thin film deposited by RF magnetron sputtering was substantially improved by using a Zn buffer layer. The highest ZnO film quality was obtained with a Zn buffer layer 110 nm thick. The surface roughness of the ZnO thin film increases as the Zn buffer layer thickness increases.  相似文献   

12.
0.68PbMg1/3Nb2/3O3-0.32PbTiO3 (PMN-PT) thin films with a lead zirconate titanate Pb(Zr0.3Ti0.7)O3 (PZT)/PbOx buffer layer were deposited on Pt/TiO2/SiO2/Si substrates by radio frequency magnetron sputtering technique, and pure perovskite crystalline phase with highly (100)-preferred orientation was formed in the ferroelectric films. We found that the highly (100)-oriented thin films possess not only excellent dielectric and ferroelectric properties but also a large electrocaloric effect (13.4 K at 15 V, i.e., 0.89 K/V) which is attributed to the large electric field-induced polarization and entropy change during the ferroelectric-paraelectric phase transition. The experimental results indicate that the use of PZT/PbOx buffer layer can induce the crystal orientation and phase purity of the PMN-PT thin films, and consequently enhance their electrical properties.  相似文献   

13.
The effect of silicon nitridation on structural quality, indium incorporation, and electrical properties of the InGaN/Si heterojunctions is investigated. A series of InxGa1 − xN (x = 0-0.32) thin films are grown directly on Si(111) substrates, with and without a SixNy surface layer, by plasma-assisted molecular beam epitaxy. The crystalline quality is higher and the indium incorporation is increased when the InxGa1 − xN thin films are grown with the intentional SixNy buffer. These observations are explained by the reduced local elastic stress at the interface and N-polarity of the surface, both of which promote the incorporation of In. The obtained n-InxGa1 − xN/p-Si (x = 0.2-0.3) heterojunctions exhibit a nearly ohmic behavior, and the series resistance is higher for the SixNy-containing junctions. Our results suggest that unlike the amorphous SixNy region spontaneously formed during direct deposition of III-nitrides on Si, the SixNy layer obtained by high-temperature annealing of Si(111) in nitrogen atmosphere is beneficial to the InxGa1 − xN deposition.  相似文献   

14.
Multilayer structures (up to 15 layers) with β-FeSi2 nanocrystallites (NCs) buried in silicon crystalline lattice were grown by successive repetition of reactive deposition epitaxy (RDE) or solid phase epitaxy (SPE) of thin iron film on Si(100) or Si(111) substrates and silicon molecular beam epitaxy (MBE) (100-200 nm). Cross-section high resolution transmission electron microscopy (HR TEM) images and ex situ optical and Raman spectroscopy data prove that NCs formed in silicon matrix have the structure and optical properties of β-FeSi2. The growth conditions provide no dislocations in silicon lattice were found in the course of TEM analysis. Two types of NCs depth distribution were observed: (i) layered that corresponds to iron RDE and (ii) uniform that occurs in the case of iron SPE. The uniform NCs distribution points out the fact that during a growth process NCs moves up to the surface. In spite of small nanocrystallites size (5-50 nm) and their distribution in silicon cap layers the significant photoluminescence (PL) signal at 0.8 eV was observed for all grown samples.  相似文献   

15.
Ta thin films were deposited on Si (100) substrates by an ion beam deposition method at various substrate bias voltages under Ar + N2 atmosphere with different pressure ratios of Ar and N2. The effects of nitrogen pressure in the plasma gas and the substrate bias voltage on the surface morphology, crystalline microstructure, electrical resistivity and diffusion barrier property were investigated. It was found that the fraction of a metastable β-phase in the Ta film deposited at the substrate bias voltage of − 50 V films decreased by adding nitrogen gas, while the α-Ta phase became dominant. As a result, the Ta films deposited at the substrate bias voltage of − 50 V under Ar (9 Pa) + N2 (3 Pa) atmosphere showed a dominant α-phase with good surface morphology, low resistivity, and superior thermal stability as a diffusion barrier.  相似文献   

16.
Epitaxial LiNbO3 (LN) thin films have been grown onto (00.1) Al2O3 substrates and onto sapphire covered with a conductive ZnO buffer layer. For the two systems, the LN thin films are well crystallised and highly (00.1) oriented. Epitaxial relationships between the different layers are evidenced both on the LN/sapphire film and the LN/ZnO/sapphire heterostructure. The optical waveguiding propagation losses of the LN/sapphire films are very low (1 ± 0.5 dB/cm) while the LN/ZnO/sapphire heterostructure does not exhibit satisfying waveguiding properties mainly due to the high conductivity (600 S m− 1) of the ZnO buffer layer.  相似文献   

17.
Large tensile stresses (up to 3 GPa) were previously observed in low-mobility metallic Mo1 − xSix films grown on amorphous Si and they were ascribed to the densification strain at the amorphous-crystalline transition occurring at a critical film thickness. Here, we focus on the influence of the nucleation conditions on the subsequent stress build-up in sputter-deposited Mo0.84Si0.16 alloy films. For this purpose, growth was initiated on various underlayers, including amorphous layers and crystalline templates with different lattice mismatch, and the stress evolution was measured in situ during growth using the wafer curvature technique. Tensile stress evolutions were observed on amorphous SiO2 and (111) Ni underlayers, similarly to the stress behaviour found on amorphous Si. For these series, the films were characterized by large in-plane grain size (~ 500 nm). However, on a (110) Mo buffer layer, a different stress behaviour occurred: after an initial tensile rise ascribed to coherence stress, a reversal towards a compressive steady state stress was observed. A change in film microstructure was also noticed, the typical grain size being ~ 30 nm. The origin of the compressive stress source in the metastable Mo0.84Si0.16 alloy grown on (110) Mo is discussed based on the stress evolutions measured at varying deposition rates and Ar working pressures, as well as in comparison with stress evolutions in pure Mo films.  相似文献   

18.
《Materials Letters》2004,58(27-28):3597-3600
Highly c-axis-oriented lithium niobate (LiNbO3) thin films have been grown on Si with optimum thickness of the SiO2 buffer layer by pulsed laser deposition technique. The amorphous SiO2 buffer layer was formed on Si (100) wafer by thermal oxidation method. The crystallinity and c-axis orientation of LiNbO3 films were strongly influenced by the thickness of amorphous SiO2 buffer layers. The optimum thickness of the amorphous SiO2 buffer layer was found to be about 230 nm for the growth of highly c-axis-oriented LiNbO3 films. The achieved films have smooth surface and sharp interface. The prism coupler method indicates that the prepared LiNbO3 films have great potential for optical waveguide device.  相似文献   

19.
Hexagonal indium nitride (InN) films on (111)- and (100)-oriented yttria-stabilized zirconia (YSZ) substrates and (0001)-oriented Al2O3 substrates have been grown for the first time at a rate of 1 μm/h by the method of metalorganic vapor-phase epitaxy with plasma-assisted nitrogen activation in an electron cyclotron resonance discharge generated by gyrotron radiation at low-temperature (350°C) growth. InN films grown without buffer layers possess a textured polycrystalline structure. Using an InN/GaN double buffer layer, single-crystalline InN films have been obtained on Al2O3(0001) substrates. Data on the morphology, structure, and photoluminescent properties of the obtained InN films are presented.  相似文献   

20.
X. Zhang 《Thin solid films》2009,518(5):1522-1526
A series of zirconium silicon nitride (Zr1−xSixN) thin films were grown on r-plane sapphire substrates using reactive RF magnetron co-sputtering of Zr and Si targets in a N2/Ar plasma. X-ray diffraction pole figure analysis, X-ray reflectivity, X-ray photoelectron spectroscopy (XPS), optical microscopy, and optical absorption spectroscopy were used to characterize the film stoichiometries and structures after growth at 200 °C and post-deposition annealing up to 1000 °C in ultra-high vacuum. The atomically clean r-plane sapphire substrates induce high quality (100) heteroepitaxy of ZrN films rather than the (111) orientation observed on steel and silicon substrates, but the addition of Si yields amorphous films at the 200 °C growth temperature. After the annealing treatment, films with Si content x < 0.15 have compressive stress and crystallize into a polycrystalline structure with (100) fiber texture. For x > 0.15, the films are amorphous and remain so even after ultra-high vacuum annealing at 1000 °C. XPS spectra indicate that the bonding changes from covalent to more ionic in character as Si―N bonds form instead of Zr―N bonds. X-ray reflectivity, atomic force microscopy (AFM) and optical microscopy data reveal that after post-deposition annealing the 100 nm thick films have an average roughness < 2 nm, except for Si content near x = 0.15 corresponding to where the film becomes amorphous rather than being polycrystalline. At this stoichiometry, evidence was found for regions of film delamination and hillock formation, which is presumably driven by strain at the interface between the film and sapphire substrate. UV-visible absorption spectra also were found to depend on the film stoichiometry. For the amorphous Si-rich films (x > 0.15), the optical band gap increases with Si content, whereas for Zr-rich films (x < 0.15), there is no band gap and the films are highly conductive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号