共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Valdueza-Felip J. IbáñezE. Monroy M. González-HerráezL. Artús F.B. Naranjo 《Thin solid films》2012,520(7):2805-2809
We investigate the influence of a low-growth-rate InN buffer layer on structural and optical properties of wurtzite nanocrystalline InN films deposited on Si(111) substrates by reactive radio-frequency sputtering. The deposition conditions of the InN buffer layer were optimized in terms of morphological and structural quality, leading to films with surface root-mean-square roughness of ~ 1 nm under low-growth-rate conditions (60 nm/h). The use of the developed InN buffer layer improves the crystalline quality of the subsequent InN thick films deposited at high growth rate (180 nm/h), as confirmed by the narrowing of X-ray diffraction peaks and the increase of the average grain size of the layers. This improvement of the structural quality is further confirmed by Raman scattering spectroscopy measurements. Room temperature PL emission peaking at ~ 1.58 eV is observed for InN samples grown with the developed buffer layer. The crystal and optical quality obtained for InN films grown on Si(111) using the low-growth-rate InN buffer layer become comparable to high-quality InN films deposited directly on GaN templates by RF sputtering. 相似文献
2.
Mahesh Kumar Basanta Roul Thirumaleshwara N. Bhat P. Misra Neeraj Sinha S.B. Krupanidhi 《Materials Research Bulletin》2010,45(11):1581-1585
High-quality GaN epilayers were grown on Si (1 1 1) substrates by molecular beam epitaxy using a new growth process sequence which involved a substrate nitridation at low temperatures, annealing at high temperatures, followed by nitridation at high temperatures, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. The material quality of the GaN films was also investigated as a function of nitridation time and temperature. Crystallinity and surface roughness of GaN was found to improve when the Si substrate was treated under the new growth process sequence. Micro-Raman and photoluminescence (PL) measurement results indicate that the GaN film grown by the new process sequence has less tensile stress and optically good. The surface and interface structures of an ultra thin silicon nitride film grown on the Si surface are investigated by core-level photoelectron spectroscopy and it clearly indicates that the quality of silicon nitride notably affects the properties of GaN growth. 相似文献
3.
采用电化学沉积法,在半导体硅片上制备了具有纳米晶粒尺寸的NiFe缓冲层薄膜,并确定了获得Ni80Fe20合金的工艺条件.由SEM形貌观测分析,当薄膜名义厚度>25 nm时,可形成连续性镀层.I-t暂态曲线及STM结果表明,NiFe薄膜在低过电位下以三维岛状模式生长,在高过电位下以二维层状模式生长,其RMS表面粗糙度最小值仅为0.5 nm.XRD结果表明,薄膜为面心立方Ni基固溶体结构,并具有明显的(111)晶面择优取向.当薄膜组成为Ni80Fe20时,各向异性磁电阻效应(AMR)最大,AMR值为1.8%. 相似文献
4.
S. Karmann H. P. D. Schenk U. Kaiser A. Fissel Wo. Richter 《Materials Science and Engineering: B》1997,50(1-3):228-232
Single crystalline aluminum nitride (AlN) thin films are deposited by molecular beam epitaxy (MBE) using thermally evaporated aluminum and RF-plasma excited nitrogen gas. In this paper we report on films grown on Si(111) at substrate temperatures of 800° with growth rates between 65 and 350 nm h−1. All layers consist of hexagonal and exactly c-axis oriented AlN crystals with column-like structure. For the smoothest layers surface roughness (rms) around 1 nm is obtained. In the XRD-spectra (ω-scan) we have achieved a minimum FWHM of 0.4° (=25′) for the AlN(00.2) reflex. At maximum growth rates (350 nm h−1) for AlN a transition zone of about 200 nm is formed with high defect density compared to the subsequent growth. For lower growth rates (65 nm h−1) no transition zone exists. Application of a substrate nitridation leads to a partial loss of epitaxial relation between AlN layer and Si(111)-substrate. 相似文献
5.
ZnO layers were grown on (111) GaAs substrates by laser molecular epitaxy at substrate temperatures between 200 and 550 °C. X-ray diffraction analysis revealed that c-axis of ZnO epilayer with a wurtzite structure is perpendicular to the substrate surface. X-ray rocking curves and Raman spectroscopy showed that the crystal quality of ZnO epilayers depends on the substrate temperature during the growth. Strong near-band-edge emission in the UV region without any deep-level emissions was observed from the ZnO epilayers at room temperature. The results indicate that laser molecular beam epitaxy is a promising growth method for obtaining high-quality ZnO layers on (111) GaAs substrates. 相似文献
6.
Ryo Kuroda Zhengxin Liu Yasuhiro Fukuzawa Yasuhito Suzuki Masato Osamura Shinan Wang Naotaka Otogawa Teruhisa Ootsuka Takahiro Mise Yasushi Hoshino Hisao Tanoue 《Thin solid films》2004,461(1):34-39
For the epitaxial growth of thick β-FeSi2 films, we fabricated ultrathin β-FeSi2 template layers (thinner than 20 nm) on Si (111) substrates with different methods. Surface morphology and crystallinity of the template layers were found to be dependent on the surface conditions of the substrate and the fabrication method. It was revealed that to form a smooth and continuous template, a hydrogen-terminated surface was better than that covered with a several-nanometer oxide layer. Using this surface, continuous (110)/(101)-oriented epitaxial template was obtained by depositing 6-nm iron at 400 °C and subsequent in situ annealing at 600 °C in MBE chamber, namely, a reaction deposition epitaxy (RDE) method. Co-deposition of iron and silicon with atomic ratio of Fe/Si=1/2 allowed the forming of template layers at further low temperature. Co-deposited template layers exhibited better crystallinity and morphology than those prepared by RDE. By using the optimized template layer, we succeeded in growing high-quality thick β-FeSi2 films on Si (111) substrates with sharp β-FeSi2/Si interface. 相似文献
7.
8.
Effects of SiC buffer layers were studied on the residual strain of GaN films grown on 3C-SiC/Si (111) substrates. It was clearly observed by Raman scattering measurement that the residual strain of the GaN/Si is reduced by inserting the SiC intermediate layer. Furthermore, residual strain within the GaN/SiC/Si films decreased when the growth temperature of the SiC buffer layer decreased. It was proposed that the irreversible creep phenomenon occurs during the high temperature growth of SiC, affecting nature of the residual strain within the SiC and the GaN layers. 相似文献
9.
We demonstrate that vertically aligned InN nanorods have been grown on Si(111) substrates by plasma-assisted molecular-beam epitaxy (PA-MBE) at low and high growth temperatures (LT- and HT-InN nanorods). High-resolution scanning electron microscopy images clearly show that InN nanorods grown on Si(111) are hexagonal in shape, vertically aligned, well separated and densely distributed on the substrate. The size distribution of LT-InN nanorods is quite uniform, while the HT-InN nanorods exhibit a broad, bimodal distribution. The structural analysis performed by Raman scattering indicates that PA-MBE grown InN nanorods have the wurtzite-type InN single-crystal structure with the rod axis (growth direction) along the c-axis. In addition, both types of nanorods contain high concentrations of electrons (unintentionally doped). Compared to the HT-InN nanorods and the PA-MBE-grown InN epitaxial film, the LT-grown InN nanorods have a considerable number of structural defects. Near-infrared photoluminescence (PL) from LT- (∼ 0.77 eV) and HT-InN (∼ 0.70 eV) nanorods is clearly observed at room temperature. In comparison with the LT-InN nanorods, the PL efficiency of HT-InN nanorods is better and the PL peak energy is closer to that of InN-on-Si epitaxial films (∼ 0.66 eV). We also find that the PL band at low temperatures from nanorods is significantly weaker (compared to the InN film case) and exhibits anomalous temperature effects. We propose that these PL properties are results of considerable structural disorder (especially for the LT-InN nanorods) and strong surface electron accumulation effect (for both types of nanorods). 相似文献
10.
11.
J.-R. Duclre C. Mc Loughlin J. Fryar R. O'Haire M. Guilloux-Viry A. Meaney A. Perrin E. McGlynn M.O. Henry J.-P. Mosnier 《Thin solid films》2006,500(1-2):78-83
C-axis oriented ZnO layers were grown by pulsed-laser deposition on the surface of a platinum (111) epitaxial thin film supported by a c-sapphire substrate. The Pt bottom layer provides good in-plane lattice matching with c-ZnO, enabling epitaxial re-growth of the latter, as shown by X-ray diffraction data. Room- and low-temperature reflectance and photoluminescence measurements have been performed on such ZnO/Pt heterostructures for the first time. Intense resonances, corresponding to the A and B free excitons, are clearly evidenced in the reflectance measurements at 30 K, while the deconvolved full widths at half maximum of the bound excitonic lines, observed in the photoluminescence spectra at 28 K, range between 3 and 7 meV. This report clearly demonstrates that ZnO epitaxial thin films with very good structural and optical properties can be grown on a Pt bottom electrode and, thus, establishes the potential of this material system for use in ZnO-based optoelectronic devices. 相似文献
12.
16 nm thick Copper Phthalocyanine (CuPc) films were deposited at room temperature in Ultra High Vacuum onto “n” and “p” type doped Si(111) substrates covered with a native SiO2 overlayer. Atomic Force Microscopy indicates that the two substrates are both atomically flat (0.15 nm root mean square roughness). Angle dependent X-ray photoemission spectroscopy shows that the thickness of the native SiO2 over-layer is 0.8 nm (both for the “n” and “p” type Si substrate). Despite the identity of the substrate roughness, of the SiO2 thickness, and of the CuPc film growth conditions, the organic films (made out of crystallites in the α-phase, as checked with X-ray Diffraction) grown on the “p” and “n” type substrate show clearly different morphological features (determined with Atomic Force Microscopy and Scanning Electron Microscopy measurements). While the CuPc film on “p” Si(111) shows a compact network of densely packed crystallites with sizes (along the substrate plane) ranging from 50 to 100 nm, the CuPc film on “n” Si(111) shows a slightly more open network of larger crystallites (with 75-150 nm size range). Accordingly, the CuPc film roughness is 0.67 nm and 1.15 nm for the “p” and “n” type substrate respectively. Due to the increased surface to volume effects (lower crystallite size) affecting the CuPc film on “p” Si(111), this film exhibits stronger interaction with oxygen and water vapor of the ambient air, as determined by photoemission spectroscopy experiments performed on samples as grown “in situ” and after prolonged (1 year) exposure to air. 相似文献
13.
Chromium disilicide (CrSi2) films 1 000 Å thick have been prepared by molecular beam epitaxy on CrSi2 templates grown on Si(111) substrate. The effect of the substrate temperature on the structural, electrical and optical properties of CrSi2 films has been studied by transmission and scanning electron microscopies, optical microscopy, electrical resistivity and Hall effect measurements and infrared optical spectrometry. The optimal temperature for the formation of the epitaxial A-type CrSi2 film have been found to be about 750°C. The electrical measurement have shown that the epitaxial A-type CrSi2 film is p-type semiconductor having a hole concentration of 1 × 1017cm−3 and Hall mobility of 2 980 cm2 V−1 s−1 at room temperature. Optical absorption coefficient data have indicated a minimum, direct energy gap of 0.34 eV. The temperature dependence of the Hall mobility (μ) in the temperature range of T = 180–500 K can be expressed as μ = 7.8 × 1010T−3cm2V−1s−1. 相似文献
14.
A. OsipovS.A. Kukushkin N.A. FeoktistovA. Osipova N. VenugopalG.D. Verma Bipin Kumar GuptaAnirban Mitra 《Thin solid films》2012,520(23):6836-6840
ZnO thin films are grown on Si substrates with SiC buffer layer using ion plasma high frequency magnetron sputtering. These substrates are fabricated using a technique of solid phase epitaxy. With this technique SiC layer of thickness 20-200 nm had been grown on Si substrates consisting pores of sizes 0.5-5 μm at SiC and Si interface. Due to mismatching in lattice constants as well as thermal expansion coefficients, elastic stresses have been developed in ZnO film. Pores at the interface of SiC and Si are acting as the elastic stress reliever of the ZnO films making them strain free epitaxial. ZnO film grown on this especially fabricated Si substrate with SiC buffer layer exhibits excellent crystalline quality as characterized using X-ray diffraction. Surface topography of the film has been characterized using Atomic Force Microscopy as well as Scanning Electron Microscopy. Chemical compositions of the films have been analyzed using Energy Dispersive X-ray Spectroscopy. Optical properties of the films are investigated using Photoluminescence Spectroscopy which also shows good optical quality. 相似文献
15.
T.W KimH.I Lee 《Materials Research Bulletin》2002,37(10):1763-1771
Lattice-mismatched ZnTe epilayers on GaAs (1 0 0) substrates with and without ZnSe buffer layers were grown by using molecular beam epitaxy. AFM, XRD, and TEM measurements were performed to investigate the surface and structural properties of the ZnTe thin films. Photoluminescence, Raman scattering, and TEM measurements showed that the crystallinity of a ZnTe epilayer grown on a GaAs substrate was remarkably improved by using a ZnSe buffer layer. Photoreflectance measurements showed that the strain of the ZnTe layer with the ZnSe buffer layer was smaller than that without the ZnSe buffer layer. These results indicate that ZnTe epitaxial films grown on GaAs substrates with ZnSe buffer layers hold promise for potential applications in optoelectronic devices operating in the blue-green spectral region. 相似文献
16.
P. Hens V. JokubaviciusR. Liljedahl G. WagnerR. Yakimova P. WellmannM. Syväjärvi 《Materials Letters》2012,67(1):300-302
Cubic silicon carbide is a promising material for medium power electronics operating at high frequencies and for the subsequent growth of gallium nitride for more efficient light emitting diodes. We present a new approach to produce freestanding cubic silicon carbide (3C-SiC) with the ability to obtain good crystalline quality regarding increased domain size and reduced defect density. This would pave the way to achieve substrates of 3C-SiC so that the applications of cubic silicon carbide material having selectively (111) or (001) oriented surfaces can be explored. Our method is based on the combination of the chemical vapor deposition method and the fast sublimation growth process. Thin layers of cubic silicon carbide grown heteroepitaxially on silicon substrates are for the first time used for a subsequent sublimation growth step to increase layer thicknesses. We have been able to realize growth of freestanding (001) oriented 3C-SiC substrates using growth rates around 120 μm/h and diameters of more than 10 mm. The structural quality from XRD rocking curve measurements of (001) oriented layers shows good FWHM values down to 78 arcsec measured over an area of 1 × 2 mm2, which is a quality improvement of 2-3 times compared with other methods like CVD. 相似文献
17.
Lili Sun Chuanwei Sun Huizhao Zhuang Jinhua Chen Zhaozhu Yang 《Materials Letters》2007,61(30):5220-5222
GaN nanorods have been synthesized by ammoniating Ga2O3 films on a TiO2 middle layer deposited on Si(111) substrates. The products were characterized by X-Ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transformed infrared spectra (FTIR) and high-resolution transmission electron microscopy (HRTEM). The XRD analysis indicates that the crystallization of GaN film fabricated on TiO2 middle layer is rather excellent. The FTIR, SEM and HRTEM demonstrate that these nanorods are hexagonal GaN and possess a rough morphology with a diameter ranging from 200 nm to 500 nm and a length less than 10 μm, the growth mechanism of crystalline GaN nanorods is discussed briefly. 相似文献
18.
19.
J.Y. Moon H.Y. Kwon M.J. Shin Y.J. Choi H.S. Ahn J.H. Chang S.N. Yi Y.J. Yun D.H. Ha S.H. Park 《Materials Letters》2009,63(30):2695-2697
We grew one-dimensional GaN nanoneedles on AlN/Si(111) substrates at HCl/NH3 gas-flow ratios of 1/20, 1/30, and 1/50 using the hydride vapor-phase epitaxy (HVPE) method. Field emission-scanning electron microscopy (FE-SEM) images of GaN nanoneedles show that the vertical growth rate of GaN nanoneedles increases with increasing gas-flow ratio, but there is little growth in the lateral direction. X-ray diffraction patterns indicate that GaN nanoneedles grew with c-axes oriented perpendicular to the substrate. The room-temperature PL spectrum of GaN nanoneedles was detected at 3.237 eV of near-band-edge transitions. 相似文献
20.
Kazuyuki Tamura Yuichiro Kuroki Maki Suemitsu Tetsuro Endou Yuzuru Narita Tadashi Akahane 《Thin solid films》2008,516(5):659-662
GaN films were grown on SiC/Si (111) substrates by hot-mesh chemical vapor deposition (CVD) using ammonia (NH3) and trimetylgallium (TMG) under low V/III source gas ratio (NH3/TMG = 80). The SiC layer was grown by a carbonization process on the Si substrates using propane (C3H8). The AlN layer was deposited as a buffer layer using NH3 and trimetylaluminum (TMA). GaN films were formed and grown by the reaction between NHx radicals, generated on a tungsten hot mesh, and the TMG molecules. The GaN films with the AlN buffer layer showed better crystallinity and stronger near-band-edge emission compared to those without the AlN layer. 相似文献