首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antimony sulfide (Sb2S3) was successfully synthesized from antimony chloride (SbCl3) and sodiumthiosulfate (Na2S2O3) in ethylene glycol (EG) containing different polyvinylpyrrolidone (PVP) masses under cyclic microwave radiation. XRD and SEM show that the products were orthorhombic Sb2S3 nanorods forming the dumb-bells. TEM study reveals Sb2S3 single-crystal nanorods, growing along the [001] direction. The dumb-bell formation is also proposed, according to the splitting ends and a middle tie-up. Its direct band gap, calculated from UV-visible absorption, is 1.52 eV.  相似文献   

2.
This paper describes an ethylene glycol (EG)-assisted approach to the large-scale ultralong Sb2S3 sub-microwires, formed by a simple hydrothermal reaction between SbCl3 and Na2S in the presence of distilled water. Transmission electron microscopy and scanning electron microscopy studies indicate that these Sb2S3 sub-microwires possess a diameter around 200 nm and length up to 100 μm. High-resolution transmission electron microscopy and selected area electron diffraction studies reveal that each Sb2S3 sub-microwire is a single-crystal along the [0 0 1] direction. The possible formation mechanism of the sub-microwires was discussed. The effects of volume ratio of EG/water, reaction temperature and the concentration of CO(NH2)2 on the morphology of Sb2S3 sub-microwires were also investigated.  相似文献   

3.
While Cu2SnSe3 material has various potential applications including acousto-optics and photovoltaics, preparation methods of this material only in a bulk form or a thin film have been reported so far. In this work, for the first time, we demonstrate that highly crystalline Cu2SnSe3 nanoparticles can be prepared via colloidal synthesis. The Cu2SnSe3 nanocrystals have a cubic crystal structure with a lattice parameter of 5.68 Å, an average diameter of 18 nm, and an atomic ratio of approximately 2:1:3. The nanocrystals can be stably suspended in solution for several months. The suspended nanocrystalline form of Cu2SnSe3 could potentially be useful for printable acousto-optic and photovoltaic applications.  相似文献   

4.
Nanocrystalline antimony trisulfide (Sb2S3) was successfully synthesized via microwave irradiation by the reaction of antimony trichloride (SbCl3) and thiourea (CS(NH2)2) with PVP as the surfactant. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high resolution TEM (HRTEM). XRD results show that the as-prepared sample is orthorhombic-phase Sb2S3. TEM image of the as-prepared Sb2S3 shows the rod-like structure. HRTEM image indicates that rodbundles of Sb2S3 consists of a number nanorods with the diameter ranging from 30 nm to 50 nm. Detailed HRTEM image demonstrates the preferential direction growth of the Sb2S3 nanorods. The electrochemical properties of Sb2S3 were primarily investigated by constant current charge/discharge cycling tests in lithium hexafluorophosphate (LiPF6) solution. The possible electrochemical reaction mechanism was explained. The results indicate that the nanocrystalline Sb2S3 shows potential application in the field of the electrode materials.  相似文献   

5.
Peanut-shaped Sb2S3 superstructures have been synthesized via a hydrothermal process at 120 °C for 8 h using hydrochloric acid and antimony O-benzyl dithiocarbonate (benzylxanthate, Sb(S2COC7H7)3) as starting materials. The powder X-ray diffraction (XRD) pattern shows the product corresponds to the pure orthorhombic phase of Sb2S3, the purity and composition of which are further confirmed by X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) studies reveal that the peanut-shaped Sb2S3 superstructures are aggregated by nanorods. The possible mechanistic pathways in the formation of the structures are discussed.  相似文献   

6.
Bismuth sulfide (Bi2S3) nanofibers have been successfully prepared by a photochemical method from an aqueous solution of bismuth nitrate (Bi(NO3)3) and thioacetamide (TAA) in the presence of complexing agents of nitrilotriacetic acid (NTA) at room temperature. It was found that the irradiation time, the pH of the solution, and the species of complexing agents play important roles in the morphology control of the bismuth sulfate (Bi2S3) nanomaterials. The nanofibers were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectra (XPS), and UV-Visible absorption spectra (UV-Vis). Probable mechanisms for the photochemical formation of Bi2S3 nanofibers in aqueous solutions are proposed. The photochemical method is a convenient approach for controlling the shape for other metal sulfide semiconductor nanocrystals.  相似文献   

7.
CdS/Sb2S3/PbS structures were prepared by sequential chemical deposition of CdS, Sb2S3 and PbS thin films on TEC-8 (Pilkington) transparent electrically conductive SnO2 (TCO) coatings. CdS thin films (100 nm) were deposited with hexagonal structure from Cd-citrate bath and of cubic structure from Cd-ammine/triethanolamine bath. Sb2S3 thin films were deposited at 40 °C from a solution mixture of potassium antimony tartrate, triethanolamine, ammonia and thioacetamide(TA) or at 1 to 10 °C from a mixture of antimony trichloride and thiosulfate (TS). These films were made photoconductive by heating at temperatures 250 to 300 °C. When heated in the presence of a chemically deposited Se thin film of 300 nm, a solid solution Sb2S1.8Se1.2 resulted. PbS thin films of 100-200 nm thickness were deposited on the TCO/CdS/Sb2S3 or TCO/CdS/Sb2S1.8Se1.2 structure. Graphite paint was applied on the PbS film prior to applying a silver epoxy paint. The cell structures were of area 0.4 cm2. The best results reported here is for a cell: TCO/CdS(hex-100 nm)/Sb2S3(TS-100 nm)/PbS(200 nm) with open circuit voltage (Voc) 640 mV, short circuit current density 3.73 mA/cm2, fill factor 0.29, and conversion efficiency 0.7% under 1000 Wm− 2 sunlight. Four series-connected cells of area 1 cm2 each gave Voc of 2 V and short circuit current of 1.15 mA.  相似文献   

8.
In this study, a catalyst-free growth method was discovered to prepare the high-quality single crystal Sb2Te3 nanowires from the Al:Ge:Sb:Te thin films. The diameters of Sb2Te3 nanowires were found to be ~ 100 nm and their lengths were as great as tens of micrometers. The Al content and the annealing temperature play an important role in the growth of Sb2Te3 nanowires. When the Al content (> 12.4 at.%) was sufficiently contained in Al:Ge:Sb:Te film, Sb2Te3 nanowires were extruded spontaneously on the surface of thin film with increase in annealing temperatures. Compared with the vapor-liquid-solid method, our method has advantages of low temperature (~ 300 °C) and no impurities, such as a metal catalyst.  相似文献   

9.
Cui Zhao  Xianmei Lan 《Materials Letters》2007,61(29):5083-5086
Morphology-controlled growth of nanomaterials is an important topic in nanosciences because it is the prerequisite of the applications of nanomaterials. In this work, we reported the microwave-enhanced rapid and green synthesis of Sb2Se3 nanorods with a flat cross section through the reaction between selenium powders and sodium antimony tartrate. Microwave irradiation greatly shortened the reaction time, which made the cycle to be as short as 30 min. The intrinsic mechanism for the formation of nanorods with a flat cross section is related to the direction of the unique layer-structured structure of orthorhombic Sb2Se3.  相似文献   

10.
Copper antimony sulfide (Cu3SbS4) crystals were produced from mixtures of different molar ratios of CuCl, SbCl3 and thiourea in 40 and 60 ml ethylene glycol (EG) by a 300 W cyclic microwave radiation (CMR) for different lengths of time. In the present research, tetragonal Cu3SbS4 microflowers, characterized by X-ray and electron diffraction including electron microscopy and Raman analyses, were successfully produced in the 40 ml solution containing 2:2:4 molar ratio Cu:Sb:S for 40 cycles. Their UV-visible absorption was studied to determine the energy gap (Eg). A formation mechanism was also proposed to relate with the experimental results.  相似文献   

11.
Sb2Se3 nanowires ([0 0 1] orientation) with diameter of ∼100 nm and high aspect ratio were successfully synthesized in large scale by a facile nonaqueous polyol method, where home-prepared NaHSe alcohol solution is used as selenium source and PEG-400 serves as an excellent solvent and structure director. The product was characterized by XRD, TEM, SAED, HRTEM, EDS and diffuses reflectance spectroscopy, respectively. The effects of the experimental conditions on the final morphologies were also investigated. The method is promising to be extended to synthesize other V2VI3 compound semiconductor 1D nanostructure.  相似文献   

12.
An alternative two-step method has been proposed for the synthesis of Bi2O3 nanowires with a diameter of about 40 nm from common and cost-effective Bi(NO3)3·5H2O, Na2SO4, and NaOH. That is, first, Bi2O(OH)SO4 nanowires were prepared through the precipitation reaction of Bi(NO3)3·5H2O and Na2SO4 in distilled water under the ambient condition and second, monoclinic phase Bi2O3 nanowires were prepared via the hydrothermal reaction of Bi2O(OH)SO4 and NaOH at 120 °C for 12 h. The resultant products were characterized by X-ray diffraction, field emission scanning electron microscope, and high resolution transmission electron microscopy. In addition, the photocatalytic studies indicated that the as-synthesized Bi2O3 nanowires were a kind of promising photocatalyst in remediation of water polluted by some chemically stable azo dyes.  相似文献   

13.
The particles of TiO2 modified with various amounts of SnS2 nanoparticles (TiO2/SnS2) were synthesized via the hydrothermal method by reacting SnCl4·5H2O with thioacetamide in 5% (vol.) acetic acid aqueous solution in the presence of TiO2. The obtained products were characterized by using X-ray diffraction, X-ray photoelectron spectroscopy, UV–Vis diffuse reflection spectra, scanning and transmission electron microscopy. The photodegradation activities of TiO2/SnS2 composites have been investigated by using methyl orange as target in water under the light irradiation of 250–400, 360–600 and 400–600 nm. It was found that the photodegradation activity of TiO2/SnS2 composites depended on the mass ratio of SnS2 and the wavelength of the irradiating light. The composites containing 33% SnS2 exhibited the maximum activity under the light irradiation of 250–400 and 360–600 nm. However, the more SnS2 in the composites, the higher activity appeared under the irradiation of 400–600 nm light. All the results reveal that the composites possess much better activity than the pristine TiO2.  相似文献   

14.
15.
l-Cystine was successfully used as a novel kind of sulfur source to grow Sb2S3 nanoribbons at 180 °C for 24 h in a mixed solution made of ethylene glycol and distilled water. The nanoribbons were usually tens of micronmeters in length, typically 100–300 nm in width. The structure of the nanoribbons was determined to be of the orthorhombic phase. A reasonable possible mechanism for the growth of Sb2S3 nanoribbon structures has been proposed. The as-obtained Sb2S3 products were examined using diverse techniques including X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffraction, and high-resolution TEM.  相似文献   

16.
Cu2MnTi3S8 and Cu2NiTi3S8 compounds were prepared by high-temperature synthesis. The crystal structure of these quaternary phases was investigated by X-ray powder diffraction. The compounds are described in the thiospinel structure (space group ) with the lattice constants a = 1.00353(1) nm (Cu2MnTi3S8) and a = 0.99716(1) nm (Cu2NiTi3S8). The atomic parameters were calculated in anisotropic approximation (RI = 0.0456 and RI = 0.0520 for Cu2MnTi3S8 and Cu2NiTi3S8, respectively).  相似文献   

17.
Wen-hui Li 《Materials Letters》2008,62(25):4149-4151
Single crystalline Co3O4 nanorods have been successfully synthesized through thermal decomposition of the precursor, which was obtained by the microwave-assisted hydrothermal route. The obtained sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrometer (FT-IR), and X-ray photoelectron spectroscopy (XPS). The results confirm that the resulting oxide was pure single-crystalline Co3O4 nanorods. The optical property test indicates that the absorption peak of the nanorods shifts towards short wavelength. And the blue shift phenomenon might be ascribed to the quantum effect.  相似文献   

18.
In this research, a highly efficient and rapid approach of synthesizing Bi2O3 short nanorods is reported in aqueous solutions using microwave irradiation of bismuth (III) nitrate in the presence of Polyvinylpyrrolidone (PVP), as a stabilizing polymer. Transmission electron and field-emission scanning electron microscope images clearly indicate the formation of short nanorods in 6 min under microwave irradiation. Conventional heat treatment route yields only Bi2O3 powder and it is also comparatively complicated and needs high manufacturing cost. Formation of such short Bi2O3 nanorods may be due to the formation of a polymer-metal complex with the stabilizing polymer (PVP).  相似文献   

19.
Bi2S3 with different morphologies (nanoparticles, nanorods and nanotubes) was synthesized using bismuth nitrate pentahydrate (Bi(NO3)3·5H2O) and two kinds of sulfur sources (CH3CSNH2 and NH2CSNH2) in different solvents (water, ethylene glycol and propylene glycol) via a microwave radiation method at 180 W for 20 min. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that all of the products are orthorhombic Bi2S3 phase of nanoparticles, nanorods and nanotubes, influenced by the sulfur sources and solvents. Formation mechanisms of the products with different morphologies are also proposed.  相似文献   

20.
A novel method for the synthesis of transition-metal boride nanopowder has been developed using a mechanochemical reaction between LiBH4, LiH and transition-metal chloride (TiCl3 and VCl3) by high energy ball milling. This method successfully produces TiB2 and VB2 particles dispersed within a soluble LiCl matrix. Subsequent washing with distilled water, ethanol and acetone to remove the LiCl matrix phase yields TiB2 and VB2 nanopowders of 15-60 nm particle size. From the X-ray diffraction patterns and high resolution transmission electron microscopy image, it is found that each particle is polycrystalline consisting of 3-5 nm crystallites. Neither particle nor crystallite size are increased significantly after heating at 680 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号