首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanically blended composite of nanosized TiO2 and carbon nanotubes (CNTs) was investigated as potential anode materials for Li-ion batteries. It was found that the TiO2/CNTs nanocomposite exhibits an improved cycling stability and higher reversible capacity than CNTs. The reversible capacity of the TiO2/CNTs composite reaches 168 mAh g− 1 at the first cycle and remains almost constant during long-term cycling. The electrochemical results show that the TiO2 nanoparticles in the composite not only restrain the formation of surface film, but also make a contribution to the overall reversible capacity.  相似文献   

2.
Ce-Al-MCM-41, TiO2/Al-MCM-41 and TiO2/Ce-Al-MCM-41 materials with varying contents of Ce (by impregnation) and TiO2 loaded (by solid-state dispersion) on Al-MCM-41 support are prepared. The Ce modified and TiO2 loaded composite systems are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (DRS) and X-ray photoelectron spectroscopy (XPS) techniques. The DRS and XPS of low Ce content (0.2-0.5 wt.%) modified Al-MCM-41 samples are showing more characteristic of Ce3+ species wherein cerium in interaction with Al-MCM-41 and that of high Ce (0.8, 3.0 wt.%) content modified samples are showing the characteristic of both Ce4+and Ce3+species. A series of Ce-modified Al-MCM-41 and TiO2 loaded composite catalysts are evaluated for photocatalytic degradation of phenol under UV irradiation. Low Ce content in Ce3+ state on Al-MCM-41 is showing good photoactivity in comparison with high Ce content samples and pure ceria. The composite TiO2/Ce-Al-MCM-41 is showing enhanced degradation activity due decreased rate of electron-hole recombination on TiO2 surface by the redox properties of cerium. The photocatalyst TiO2/Ce-Al-MCM-41 with an optimum of 10 wt.% TiO2 and 0.3 wt.% Ce is showing maximum phenol degradation activity. The possible mechanism of phenol degradation on the composite photocatalyst is proposed.  相似文献   

3.
Manganese oxide/carbon composite materials were prepared by introducing the carbon powders into the potentiodynamical anodic co-deposited manganese oxide in 0.5 mol L− 1 MnSO4 and 0.5 mol L− 1 H2SO4 mixed solution at 40 °C. The surface morphology and structure of the composite material were examined by scanning electron microscope and X-ray diffraction. Cyclic voltammetry tests and electrochemical impedance measurements were applied to investigate the performance of the composite electrodes with different ratios of manganese oxide and carbon. These composite materials with rough surface, which consisted of approximately amorphous manganese oxide, were confirmed to possess the ideal capacitive property. The highest specific capacitance of manganese oxide/carbon composite electrode was up to 410 F g− 1 in 1.0 mol L− 1 Na2SO4 electrolyte at the scan rate 10 mV s− 1. The synthesized composite materials exhibited ideal capacitive behavior indicating a promising electrode material for electrochemical supercapacitors.  相似文献   

4.
In this paper, an environmentally friendly electroplating process of the composite Ni–P + TiO2 coatings was developed. Such coatings were prepared by in situ codeposition of Ni–P with TiO2 powder (anatase) on a polycrystalline copper substrate from the nickel-plating bath in which titanium dioxide particles were held in suspension. The codeposition was carried out under galvanostatic conditions on a rotating disc electrode. To optimize the production conditions of the Ni–P coatings modified with TiO2 by the method of mathematical statistics, the Hartley's polyselective quasi D optimum plan of experiments was used. The relationship between the percentage content in the electrodeposited composite Ni–P + TiO2 coatings (z) and the electrodeposition parameters like cathodic current density (jdep), bath temperature (T) as well as content of TiO2 powder suspended in the galvanic bath (c), has been described by the adequate cubic polynomial equation and illustrated graphically. Based on the Hartley's plan it can be stated that the maximal TiO2 content of 28.7 at.% in the Ni–P + TiO2 coating can be obtained for the following optimal parameters of the electrodeposition process: jdep = 0.05 A cm−2, c = 99 g dm−3 and T = 40 °C. The chemical and physical characteristics of the coating obtained under such optimum conditions, have been presented. The deposit exhibits the presence of TiO2 particles embedded into the amorphous Ni–P matrix. It has been ascertained that embedding of TiO2 powder to the amorphous Ni–P matrix leads to the production of deposits with large surface area. Such electrochemical codeposition method may be a good alternative in the field of porous composite coatings used in gas evolution.  相似文献   

5.
Silica aerogels and TiO2/silica aerogel composite photocatalysts were synthesized by sol–gel technique at ambient pressure using orthosilioate and tetra-n-butyl titanate as precursors, respectively. The prepared composite photocatalysts were characterized by XRD, TEM, BET surface area, FT-IR and UV–vis absorption spectra. The results showed that the TiO2/silica aerogel composite photocatalysts possess high surface area. The addition of silica aerogels inhibited the grain growth and phase transformation of anatase to rutile during calcination. The TiO2/silica aerogel composite sample calcined at 500 °C with an optimal silica aerogel content of 7 wt.% afforded the highest photocatalytic activity. The photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol (DNBP) was investigated by using this novel TiO2/silica aerogel composite photocatalyst under solar light irradiation. The effects of irradiation time, pH, catalyst concentration, temperature and initial DNBP concentration were examined as operational parameters. The optimal operational parameters were found as follows: pH as solution pH 4.82, 8 g L−1 catalyst concentration, 20 °C, and 240 min irradiation time. The kinetics of DNBP degradation by TiO2/silica aerogel composite fit well a pseudo-first-order kinetic model. The repeatability of photocatalytic activity was also tested. This study showed the feasible and potential use of TiO2/silica aerogel composite photocatalysts in degradation of toxic organic contaminants.  相似文献   

6.
Ba0.65Sr0.35TiO3 (BST) thin films were deposited on Pt/Ti/SiO2/Si substrates by radio frequency magnetron sputtering technique. X-ray photoelectron spectroscopy (XPS) depth profiling data show that each element component of the BST film possesses a uniform distribution from the outermost surface to subsurface, but obvious Ti-rich is present to BST/Pt interface because Ti4+ cations are partially reduced to form amorphous oxides such as TiOx (x < 2). Based on the measurement of XPS valence band spectrum, an energy band diagram in the vicinity of BST/Pt interface is proposed. Dielectric property measurements at 1 MHz reveal that dielectric constant and loss tangent are 323 and 0.0095 with no bias, while 260 and 0.0284 with direct current bias of 25 V; furthermore, tunability and figure of merit are calculated to be 19.51% and 20.54, respectively. The leakage current density through the BST film is about 8.96 × 10− 7 A/cm2 at 1.23 V and lower than 5.66 × 10− 6 A/cm2 at 2.05 V as well as breakdown strength is above 3.01 × 105 V/cm.  相似文献   

7.
Anatase TiO2 coated multiwalled carbon nanotube (MWNT) nanocomposites were prepared by combining the sol-gel method with a self assembly technique at a low temperature. XRD, TEM, FTIR and XPS spectra were applied to characterize the crystal phase, microstructure, and other physicochemical properties of the sample. The results showed that MWNTs were covered with a 12-20 nm thickness layer of anatase TiO2 or surrounded by a 30 -290 nm thickness coating of anatase TiO2. The layer or coating is constructed of TiO2 nanoparticles about 5.8 nm. Furthermore, as-prepared composite was rich in surface hydroxyl groups.  相似文献   

8.
Micro- and nano-porous TiO2 films were created on the surface of Ti implants using micro-arc oxidation and anodic titanium oxide treatments, respectively, to load a sol-gel derived silica xerogel for the controlled release of the antibiotic drug, tetracycline-hydrochloride (TCH). When the silica xerogel containing TCH was loaded into porous TiO2 films, a very high drug loading efficiency was observed compared to when it was loaded in Ti implants without a TiO2 film. Moreover, TCH was released in a controlled manner for up to 7 days.  相似文献   

9.
T. Yuji  N. Mungkung  Y.M. Sung 《Vacuum》2008,83(1):124-127
In this paper, we report the utilization of the DC pulse discharge plasma jet technique as a means for the preparation of titanium oxide (TiO2) films on fluorine dope tin oxide (FTO) coated glass substrates used for dye-sensitized solar cells (DSCs). The TiO2 film made on these experimental bases exhibited the BET specific surface area of 95 m2/g, the pore volume of 0.3 cm2/g and the TEM particle size of ∼25 nm. The DSCs made by the TiO2 film exhibited an energy conversion efficiency of 5.7% at 100 mW/cm2 light intensity. Consequently, we believe that the optimization between the specific surface area and photocurrent density of TiO2 film was achieved by the plasma surface treatment which also contributed to the improvement of energy conversion efficiency of DSCs.  相似文献   

10.
We investigated the influence of the Ti out-diffusion in Pt/TiOx/SiO2/Si substrates (0 ≤ x ≤ 2), having different thicknesses of Pt and TiOx layers, on the crystalline growth of (Ba,Sr)TiO3 (BST) deposited by pulsed laser deposition. By means of X-ray diffraction and transmission electron microscopy, we show that the orientation of BST clearly depends on the presence and quantity of Ti having migrated up to the Pt surface, and on its possible oxidation prior to BST deposition, which was controlled by the atmosphere (vacuum or oxygen) of the pre-heating stage of the BST deposition process. Whereas BST has no preferential orientation if grown on a bare Pt surface, a strong (111) orientation of BST is obtained for a limited diffusion of titanium oxides on the Pt surface just before BST deposition. However, the (111) orientation is lost if this seeding titanium oxide layer on Pt is too thick just before BST deposition. Also, the formation of protrusions was evidenced at the BST/Pt interface and associated with the oxidation of Ti within the Pt layer.  相似文献   

11.
Metal plasma ion implantation has being successfully developed for improving the electronic and optical properties of semiconductor materials. Prior to deposition, a TiO2 colloidal suspension was synthesized by microwave-induced thermal hydrolysis of the titanium tetrachloride aqueous solution. The TiO2 thin film was optimized to obtain a high-purity crystalline anatase phase by calcinations at 550 °C. The TiO2 coating was uniform without aggregation, which provided good photo conversion efficiency. Ag ion implantation into the as-calcined TiO2 thin films was conducted with 1 × 1015 ~ 1 × 1016 ions/cm2 at 40 keV. The peak position and intensity of the photoluminescence and UV-Vis absorption spectra are quite sensitive to Ag doping. The optical characterization showed a shift in optical absorption wavelength towards infrared ray side, which was correlated with the structure variation of the Ag+ implanted TiO2. Due to the strong capability of forming compounds between the energetic silver ions and TiO2, the photoluminescence emission and UV-Vis absorption efficiencies were improved.  相似文献   

12.
Multi-walled carbon nanotubes (MWCNTs) were functionalized by HNO3 hydrothermal oxidation at 200 °C. The degree of surface functionalization was described by an exponential function in terms of HNO3 concentration. Very small Pt particles, with mean particle size of 1.7 ± 0.3 nm, could be supported on the surface of pristine MWCNTs and also on MWCNTs treated with HNO3 concentrations up to 0.20 mol L− 1, while a broader range of particle sizes, and larger Pt particles (3.4 ± 1.3 nm) were obtained on the MWCNTs treated with a higher HNO3 concentration (0.30 mol L− 1). Therefore, the amounts of surface groups and Pt particle sizes can be selected by tuning the HNO3 concentration used in the hydrothermal treatment.  相似文献   

13.
Lili Chen  Liang Fang  Yu Xu 《Thin solid films》2008,516(6):1285-1289
A thin TiO2 buffer layer was used to control the microstructure and electrical properties of the polycrystalline (Pb,Sr)TiO3 (PST) films produced by a Sol-Gel method on Pt(111)/Ti/SiO2/Si(100) substrates. The PST films included (Pb0.6Sr0.4)TiO3 (PST40) and (Pb0.4Sr0.6)TiO3 (PST60). It was found that a crystallized TiO2 buffer layer with a thickness of nearly 5 nm was critical for improving the crystallinity and surface morphology of both the thinner (about 40 nm) and thicker (about 330 nm) PST films, which exhibited a (l00) preferred orientation and much smoother surface comparing with those without the buffer layer. The electrical properties of the PST films having TiO2 buffer layer were also improved. For 330-nm-thick PST40 films, the dielectric constant and its tunability by dc voltage were increased from 482 and 26.8% at 10 kHz to 590 and 51.2%, while the loss and leakage current density were reduced from 0.04 and 4.26 × 10−4 A/cm2 at 100 kV/cm to 0.034 and 7.63 × 10−6 A/cm2, respectively. Similar results were also found in the PST60 films.  相似文献   

14.
Nanoparticles of titanium dioxide doped with Cr3+ ions have been prepared through an aqueous sol-gel method. The mesoporous nature of both pure and Cr3+ doped TiO2 powders, with specific surface area of 7.4 and 6.6 m2 g−1, respectively, is maintained even at calcination temperature of 800 °C. The transformation of TiO2 from the anatase to rutile phase is suppressed up to 800 °C by Cr3+ ion doping. Even though surface area values are decreased, the doped materials show improved photocatalytic activity, which may be due to increased crystallinity of the anatase phase without the formation of rutile. Doped materials have a red-shift in the band gap energy and hence, photoactivity under visible light. The rate of photodegradation of methylene blue dye for both pure and doped TiO2 under visible light has been monitored in this study. The 0.25 mol% Cr(III) doped photocatalyst, calcined at 800 °C, shows the highest photocatalytic activity under visible light with a rate constant of ∼15.8 × 10−3 min−1, which is nearly three times higher than that of commercially available Degussa P25 titania (5.8 × 10−3 min−1).  相似文献   

15.
Sol-gel derived Pb40Sr60TiO3 (PST) thin film has been investigated as a diffusion barrier for integrating in PbZr30Ti70O3 (PZT) device structures on Si substrates. PST film was deposited on SiO2/Si substrate and annealed at a relatively low temperature range of 550-600 °C producing a crack-free, smooth and textured surface. Following deposition on PST/SiO2/Si template PZT thin film was crystallised exhibiting random grain orientations and an insertion of the bottom Pt/Ti electrode forming PZT/Pt/Ti/PST/SiO2/Si stacks promoted the preferred PZT (111) perovskite phase. PZT (111) peak intensity gradually decreased along with slight increase of the PZT (110) peak with increasing annealing temperature of the buffer PST film. The dielectric and ferroelectric properties of the PZT with barrier PST deposited at 550 °C were assessed. The dielectric constant and loss factor were estimated as 390 and 0.034 at 100 kHz respectively and the remnant polarisation was 28 µC/cm2 at 19 V. The performance of the PZT/PST device structures was compared to similar PZT transducer stacks having widely used barrier TiO2 layer.  相似文献   

16.
To improve the rate capability and cyclability of LiV3O8 cathode for Li-ion batteries, LiV3O8 was modified by forming LiV3O8/carbon nanosheet composite. The LiV3O8/carbon nanosheet composite was successfully achieved via a hydrothermal route followed by a carbon coating process. The morphology and structural properties of the samples were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). TEM observations demonstrated that LiV3O8/carbon composite has a very flat sheet-like morphology, with each nanosheet having a smooth surface and a typical length of 400-700 nm, width of 200-350 nm, and thickness of 10-50 nm. Each sheet was surrounded by a thick layer of amorphous carbon. Electrochemical tests showed that the LiV3O8/carbon composite cathode features long-term cycling stability (194 mAh g−1 at 0.2 C after 100 cycles) and excellent rate capability (110 mAh g−1 at 5 C, 104 mAh g−1 at 10 C, and 82 mAh g−1 at 20 C after 250 cycles). Electrochemical impedance spectra (EIS) indicated that the LiV3O8/carbon composite electrode has very low charge-transfer resistance compared with pristine LiV3O8, indicating the enhanced ionic conductivity of the LiV3O8/carbon composite. The enhanced cycling stability is attributed to the fact that the LiV3O8/carbon composite can prevent the aggregation of active materials, accommodate the large volume variation, and maintain good electronic contact.  相似文献   

17.
A new method, combining impregnation and vapor-hydrolysis, was developed to prepare hybrid photocatalyst: nitrogen doped TiO2 coated activated carbon (N-TiO2/AC). The activated carbon (AC) was impregnated into titanium tetraethoxide/urea/methanol solution, and then the impregnated AC powder was kept in water vapor at 90 °C for 3 h for hydrolysis. Then it was calcinated to fabricate N-TiO2/AC. Transmission electron microscopy (TEM) results showed that the nitrogen doped TiO2 (N-TiO2) in the as-synthesized hybrid was anatase TiO2 powder with 10-20 nm in grain size, and the bandgap was about 3.08 eV. Moreover, the hybrid photocatalyst (8 wt.% N-TiO2) had high specific surface area that was up to 1321 m2/g. The hybrid photocatalyst is expected to have high photocatalytic performance with visible irradiation.  相似文献   

18.
TiO2 nano-particles with an anchored ZnO nano-rod structure were synthesized using the hydrothermal method to grow ZnO nano-rods and coated TiO2 nano-particles on ZnO nano-rods using the rapid thermal annealing method on ITO conducting glass pre-coated with nano porous TiO2 film. The XRD study showed that there was little difference in crystal composition for various types of TiO2 nano-particles anchored to ZnO nano-rods. The as-prepared architecture was characterized using field-emission scanning electron microscopy (FE-SEM). Films with TiO2 nano-particles anchored to ZnO nano-rods were used as electrode materials to fabricate dye sensitized solar cells (DSSCs). The best solar energy conversion efficiency of 2.397% was obtained by modified electrode material, under AM 1.5 illumination, achieved up to Jsc = 15.382 mA/cm2, Voc = 0.479 V and fill factor = 32.8%.  相似文献   

19.
A temperature programmed reduction (TPR) investigation of copper supported catalysts was undertaken to establish the role of reduction temperature on copper and its effect on the synthesis of shaped carbonaceous material (spiral, straight or formless carbon nanofibers) produced by the CCVD method. Catalyst reducibility was found to be strongly related to the type of support used (TiO2 < MgO < CaO), the copper precursor (Cu(NO3)2 < CuCl2 < Cu(acac)2) and to a lesser extent solvent utilized. The most favorable yields of carbon fibers were obtained by reducing catalysts at temperatures inferred from TPR data. The reduction temperatures used impacted upon the morphology of the carbon fibers produced (straight, spiral or curled). We have found that carbon fibers synthesized from copper catalysts at low temperature (250 °C) utilizing Cu(NO3)2/TiO2/water gave the best mass yield (340%) and selectivity towards carbon material with helical morphology (70%).  相似文献   

20.
A series of composite films based on LiFePO4/TiO2/Pt were synthesized and used as counter electrodes for dye sensitized solar cells (DSSCs). The composites are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET). These analysis results demonstrate that the crystal structure of LiFePO4 in composite is not changed, and the prepared LiFePO4/TiO2/Pt composite films hold a rough surface and porous structure which provide more catalytic activity sites for I3 ? reduction and more space for I?/I3 ? diffusion. The DSSC based on LiFePO4/TiO2/Pt composite CEs shows a high power conversion efficiency of 6.23% at a low Pt dosage of 2%, comparable to the conventional magnetron sputtering Pt CE (6.31%). The electrochemical analysis reveals that the presented composite CEs have good electrocatalytic activity and low charge transfer resistance. Furthermore, the DSSCs based on LiFePO4/TiO2/Pt composite CE exhibit high stability under the continuous tests condition and electrolyte soaking. The results suggest that this LiFePO4-based composite film could be a perspective electrode for practical application of DSSCs and it maybe provide a potential for further research about photo-charging lithium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号