首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel yellowish green phosphor tervalent terbium (Tb3+) doped strontium molybdate (SrMoO4) was synthesized by conventional solid-state reaction method and its crystal structure and luminescent properties are investigated in this paper. The X-ray diffraction patterns (XRD) showed that the phosphor sintered at 750 °C for 3 h was a pure SrMoO4 phase. The excitation spectrum consisted of two bands and the two excitation peaks located at 375 nm and 488 nm respectively. The emission spectrum was composed of four narrow bands, in which the strongest emission was located at 548 nm. The particle size analysis indicated that the median particle size D50 = 2.89 μm and range of particle size distribution was narrow. These results showed that the SrMoO4:Tb3+ phosphor was a promising yellowish green phosphor for ultraviolet light emitting diode (UVLED) and blue LED based white LED. The appropriate concentration of Tb3+ was 5 mol% for the highest emission intensity at 548 nm. Natrium ion (Na+) was found to be a promising charge compensator for SrMoO4:Tb3+ phosphor.  相似文献   

2.
Tb3+-doped SrWO4 phosphors with a scheelite structure have been prepared by hydrothermal reaction. X-ray powder diffraction, field-emission scanning electron microscopy, photoluminescence excitation and emission spectra and decay curve were used to characterize the resulting samples. Scanning electron microscopy image showed that the obtained SrWO4:Tb3+ phosphors appeared to be nearly spherical and their sizes ranged from 1 to 3 μm. Photoluminescence spectra indicated the phosphors emitted strong green light centered at 545 nm under ultraviolet light excitation. Because 12 at.% SWO4:Tb3+ phosphor exhibits intensive green emission under 254 nm excitation in comparison with the commercial green fluorescent lamp phosphor (LaPO4:Ce,Tb), the excellent luminescence properties make it a new promising green phosphor for fluorescent lamps application.  相似文献   

3.
A novel green emitting phosphor, Tb3+-doped Ca2GeO4 was prepared for the first time by a solid-state reaction. The phosphor showed prominent luminescence in green due to the magnetic dipole transition of 5D4  7F5. Structural characterization of the luminescent material was carried out with X-ray powder diffraction (XRD) analysis and field emission scanning electron microscopy (FE-SEM). Luminescence properties were analyzed by measuring the excitation and photoluminescence spectra. Photoluminescence measurements indicated that the phosphor exhibited bright green emission at about 541 and 550 nm under UV excitation. In addition, Al3+ or Li+ co-doping enhances the green emission from Ca2GeO4:Tb3+ by about 18 and 4 times, respectively, under UV excitation. The excellent luminescence properties make it a possible candidate for flat panel display application.  相似文献   

4.
YAl3(BO3)4:Tb3+ phosphors were fabricated by the sol–gel method. The phosphor showed prominent luminescence in green due to the magnetic dipole transition of 5D47F5. Structural characterization of the luminescent material was carried out with X-ray powder diffraction (XRD) analysis. Luminescence properties were analyzed by measuring the excitation and photoluminescence spectra. Photoluminescence measurements indicated that the phosphor exhibited bright green emission at about 541 nm under UV excitation. It is shown that the 11% of doping concentration of Tb3+ ions in YAl3(BO3)4:Tb3+ phosphors is optimum.  相似文献   

5.
《Materials Letters》2007,61(8-9):1654-1657
SrAl2B2O7:Tb3+ phosphors were fabricated by the sol–gel method. The phosphor showed prominent luminescence in green due to the 5D47F5 transition of Tb3+. Structural characterization of the luminescent material was carried out with X-ray powder diffraction (XRD) analysis. Luminescence properties were analyzed by measuring the excitation and photoluminescence spectra. Photoluminescence measurements indicated that the phosphor exhibited bright green emission at about 541 nm under UV excitation. It is shown that the 11% of doping concentration of Tb3+ ions in SrAl2B2O7:Tb3+ phosphors is optimum.  相似文献   

6.
Aluminum oxynitride(AlON) phosphors co-doped by Tb3+ and Ce3+ were synthesized by nitridation of the precursor which was co-precipitated from Al(NO3)3 solution and nanosized carbon black at 1750 °C for 2 "hrs" in flowing nitrogen atmosphere. The obtained AlON based powders were composed of polycrystalline spinel typed particles with sizes in the range of 1-3 μm. Under an excitation of 275 nm, it was found that co-doping of Ce3+ could drastically enhance the luminescence of AlON:Tb3+ powder by energy transfer. The product with 0.5 mol% Ce3+ and 0.67 mol% Tb3+ exhibited a strong broad green emission at 540 nm. The critical quenching concentration of Tb3+ in AlON:0.5 mol% Ce3+/xmol% Tb3+ phosphor was determined to be 0.67 mol%. It was supposed that the mechanism of concentration quenching of Tb3+ in AlON:0.5 mol% Ce3+ xmol% Tb3+ phosphor was dipole-dipole interaction.  相似文献   

7.
Bi3+ and Tb3+ ions co-doped GdAlO3 (GAP) nanophosphors have been synthesized by means of solvothermal reaction method. The XRD pattern of GAP phosphor confirms their orthorhombic phase. The luminescence properties of these phosphors have been explored by analyzing their excitation and emission spectra along with their decay curves. The excitation spectra of GAP:Tb3+, Bi3+ phosphors consist of a broad band in the shorter wavelength region due to the 4f8 → 4f75d1 transition of Tb3+ ions overlapped with the 6s2 → 6s16p1 (1S0 → 3P1) transition of Bi3+ ions and some sharp peaks in the longer wavelength region due to f → f transitions of Tb3+ ions. The present phosphors exhibit green color due to strong 5D4 → 7F5 transition of Tb3+ ions. The emission intensity was enhanced by co-doping with Bi3+ ions under 292 nm excitation, which indicate that the efficient energy transfer occurred from Bi3+ to Tb3+ ions.  相似文献   

8.
A novel green phosphor Mg2GeO4:Tb3+ with pure phase was prepared by the solid state reaction. The luminescence properties were investigated in detail. The diffusion reflection spectra of the undoped and Tb3+ doped Mg2GeO4 phosphors were recorded, the result reveals that there is an absorption band superposition of the host material and Tb3+ ion. The study on the excitation and diffusion spectra shows that there is an effective energy transfer from the host material to Tb3+ ion. Under 277 and 172 nm excitation, the phosphor presents predominant green emission at 543 and 547 nm respectively. The excitation intensity at 172 nm is about 1.8 times of that at 272 nm. The promising luminescence properties make it a candidate for application in Plasma Display Panel.  相似文献   

9.
One-dimensional Tb3+-doped β-Ga2O3 nanofibers were prepared by a simple and cost-effective electrospinning process. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Raman technique, and photoluminescence (PL) were used to characterize the electrospun nanofibers. FE-SEM results indicated that the diameters all of the nanofibers ranged from 100 to 300 nm, and the lengths of nanofibers reached up to several millimeters. The XRD and Raman results showed that the Ga2O3 phase belongs to the monoclinic phase. Under ultraviolet excitation, the β-Ga2O3:Tb3+ samples showed green emission with the strongest peak at 550 nm, corresponding to 5D4 → 7F5 transition of Tb3+ ions. The luminescence intensity had been further studied as a function of the doping concentration of Tb3+ in the β-Ga2O3 samples.  相似文献   

10.
A novel red phosphor NaLa4(SiO4)3F: Eu3+ was synthesized by the conventional solid-state reaction at 950 °C for the first time. The luminescence properties of NaLa4(SiO4)3F: Eu3+ were investigated, and the critical concentration of the activator concentration (Eu3+) was found to be 0.1 mol per formula unit. The phosphor presented red luminescence under the ultraviolet excitation of 254 or 395 nm, attributed to the transitions from 5D0 excited states to 7FJ ( J = 0-4) ground states of Eu3+ ions. The results indicated that this newly-developed phosphor could find applications in tricolor fluorescent lamp, phosphor-liquid crystal displays and white lighting devices utilizing GaN-based excitation in the near UV.  相似文献   

11.
Y6Si3O9N4:Ce3+ phosphor was prepared by a solid-state reaction in reductive atmosphere. X-ray powder diffraction (XRD) analysis confirmed the formation of Y6Si3O9N4:Ce3+. Scanning electron microscopy (SEM) observation indicated that the microstructure of the phosphor consisted of irregular fine grains with an average size of about 5 μm. Photoluminescence (PL) measurements showed that the phosphor can be efficiently excited by near ultraviolet (UV) or blue light excitation, and exhibited bright green emission peaked at about 525 nm. Compared with Ce3+-doped Y4Si2O7N2 phosphors, Ce3+-doped Y6Si3O9N4 phosphors showed longer wavelengths of both excitation and emission. The Y6Si3O9N4:Ce3+ is a potential green-emitting phosphor for white LEDs.  相似文献   

12.
Novel green-emitting Gd2 − xTbxTeO6 powder phosphor has been prepared by the oxidation of corresponding rare-earth oxytellurides. The photoluminescence (PL) properties were reported. Five dominant bands centered at 302 nm, 318 nm, 339 nm, 353 nm and 378 nm characterize the excitation spectrum. Under the excitation of 378 nm UV light, the emission spectrum exhibits an intense peak centered at 543-548 nm corresponding to the 5D4 → 7F5 transition of Tb3+. This phosphor can be excited by light with wavelengths of 350-400 nm and therefore can be used as a green phosphor for white lighting devices utilizing near-UV LED as a light source.  相似文献   

13.
Zn2SiO4:Tb nanoparticles were prepared by sol-gel-microwave heating for the first time. X-ray powder diffraction (XRD) analysis confirmed the formation of Zn2SiO4 in willemite structure. Field-emission scanning electron microscopy showed a narrow size distribution, small size (40–50 nm) and spherical shape of the particles. Energy dispersive spectroscopy result indicated that the ratio of Tb3+/Zn2+ was in agreement with that of the feed. Photoluminescence measurement indicated that the phosphor emitted strong green light centered at 545 nm under UV light excitation. The excitation spectra confirmed the energy transfer from the host material to the Tb3+ ions. This is in favor of the effective green emission of Zn2SiO4:Tb nanoparticles.  相似文献   

14.
Aluminium oxide (Al2O3) films doped with CeCl3, TbCl3 and MnCl2 were deposited at 300 °C with the ultrasonic spray pyrolysis technique. The films were analysed using the X-ray diffraction technique and they exhibited a very broad band without any indication of crystallinity, typical of amorphous materials. Sensitization of Tb3+ and Mn2+ ions by Ce3+ ions gives rise to blue, green and red simultaneous emission when the film activated by such ions is excited with UV radiation. The overall efficiency of such energy transfer results to be about 85% upon excitation at 312 nm. Energy transfer from Ce3+ to Tb3+ ions through an electric dipole-quadrupole interaction mechanism appears to be more probable than the electric dipole-dipole one. A strong white light emission for the Al2O3:Ce3+(1.3 at.%):Tb3+(0.2 at.%):Mn2+(0.3 at.%) film under UV excitation is observed. The high efficiency of energy transfer from Ce3+ to Tb3+ and Mn2+ ions, resulting in cold white light emission (x = 0.30 and y = 0.32 chromaticity coordinates) makes the Ce3+, Tb3+ and Mn2+ triply doped Al2O3 film an interesting material for the design of efficient UV pumped phosphors for white light generation.  相似文献   

15.
Z.C. Wu  J.X. Shi  J. Wang  H. Wu  Q. Su  M.L. Gong   《Materials Letters》2006,60(29-30):3499-3501
SrAl2O4:Eu2+ phosphor was prepared by a solid-state reaction in CO-reductive atmosphere. X-ray powder diffraction (XRD) analysis confirmed the formation of SrAl2O4:Eu2+. Field-emission scanning electron-microscopy (FE-SEM) observation indicated that the microstructure of the phosphor consisted of irregular fine grains with an average size of about 7–8 μm. Photoluminescence measurements showed that the phosphor can be efficiently excited by UV–visible light from 350 to 430 nm, and exhibited bright green emission peaked at about 516 nm. Bright green LEDs were fabricated by incorporating the phosphor with an InGaN-based UV chip. All the characteristics indicated that SrAl2O4:Eu2+ is a good candidate phosphor applied in white LEDs.  相似文献   

16.
Visible quantum cutting (QC) via down-conversion and enhancement in photoluminescence properties has been observed in terbium (Tb3+) doped BaGdF5 phosphor. This phosphor was synthesized by varying molar concentration of Tb3+ ions via co-precipitation method. The prepared phosphor was characterized through X-ray diffraction technique. The photoluminescence spectra of BaGdF5:Tb3+ phosphor measured under vacuum ultraviolet or UV excitation. The QC process was observed in prepared phosphor due to cross relaxation and direct energy transfer between Tb3+ and Tb3+ or Tb3+ and Gd3+ ions depending on the excitation wavelength. The maximum quantum efficiencies were found to be 162, 174 and 177 %, under the excitation of 172, 187 and 240 nm respectively. The green emission of 544 nm was observed at excitation of 172 and 187 nm. Hence this phosphor may be prime candidate for application in plasma display panels and mercury free fluorescent lamps.  相似文献   

17.
One-dimensional (1D) Y2O3:Tb3+ and Gd2O3:Tb3+ microrods have been successfully prepared through a large-scale and facile hydrothermal method followed by a subsequent calcination process in N2/H2 mixed atmosphere. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR), thermogravimetric analysis (TGA), energy-dispersive X-ray spectra (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. The as-formed products via the hydrothermal process could transform to cubic Y2O3:Tb3+ and Gd2O3:Tb3+ with the same morphology and slight shrinking in size after a postannealing process. Both Y2O3:Tb3+ and Gd2O3:Tb3+ microrods exhibit strong green emission corresponding to 5D4 → 7F5 transition (542 nm) of Tb3+ under UV light excitation (307 and 258 nm, respectively), and low-voltage electron beam excitation (1.5 → 3.5 kV), which have potential applications in fluorescent lamps and field emission displays.  相似文献   

18.
Green-phosphor spherical microparticles (2–4 μm in diameter) of CaWO4:Tb3+ (CWO:Tb) exhibiting excellent emission at 545 nm have been synthesized by a conventional hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation and emission spectra and decay curve were used to characterize the CWO:Tb phosphors. Because 12 at.% CWO:Tb phosphor shows broad and strong absorption in UV region, exhibits intensive green emission under 254 nm excitation in comparison with the commercial green fluorescent lamp phosphor (LaPO4:Ce,Tb), it is considered to be a new promising phosphor for fluorescent lamps application.  相似文献   

19.
A blue-emitting phosphor of NaMg4(PO4)3:Eu2+, Ce3+ was prepared by a combustion-assisted synthesis method. The phase formation was confirmed by X-ray powder diffraction measurement. Photoluminescence excitation spectrum measurements show that the phosphor can be excited by near UV light from 230 to 400 nm and presents a dominant luminescence band centered at 424 nm due to the 4f65d1 → 4f7 transition of Eu2+ ions at room temperature. Effective energy transfer occurs in Ce3+/Eu2+ co-doped NaMg4(PO4)3 due to large spectral overlap between the emission of Ce3+ and excitation of Eu2+. Co-doping of Ce3+ enhances the emission intensity of Eu2+ greatly by transferring its excitation energy to Eu2+, and Ce3+ plays a role as a sensitizer. Ce3+-Eu2+ co-doped NaMg4(PO4)3 powders can possibly be applied as blue phosphors in the fields of lighting and display.  相似文献   

20.
Tb3+ doped SrLa2O4 and BaLa2O4 nanophosphors were successfully synthesized via tartaric acid assisted sol–gel method and their luminescent properties were investigated. The crystal structure and morphology of SrLa2O4:Tb3+ and BaLa2O4:Tb3+ was studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). Thermal decomposition behavior of the dried gels was investigated by thermogravimetry (TG) and differential thermal analysis (TGA). Photoluminescence (PL) behaviors of these nanophosphors were checked by the excitation and emission spectra. These SrLa2O4 and BaLa2O4 nanophosphors displayed green color under a UV source due to characteristic transition of Tb3+ from 5D4 → 7F5 at 544 nm. The dependence of photoluminescence intensity on Tb3+ ion concentration, tartaric acid concentration and annealing temperature were also studied in detail. In addition, the optimum doping concentration and time-resolved luminescence spectroscopy were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号