首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The IP/MPLS-based ASON/GMPLS hybrid network architecture enables the interaction between the IP layer and the optical dense wavelength division multiplexing (DWDM) layer. This architecture makes it possible to transfer huge amounts of traffic data on DWDM networks, while supporting Internet Protocol (IP)-based service applications. Additionally, this architecture provides a unified routing scenario, which allows the dynamic routing in both the IP layer and/or optical layer. Cross- layer routing has been addressed in single domain networks scenarios, where the routing policies Physical Topology First (PTF) and Virtual Topology First (VTP) have been proposed and applied. However, applying cross-layer routing using both routing topology policies PTF and VTF has not been investigated in a multi-domain networks scenario yet. In this study, we address this issue and propose a routing scheme to establish traffic connections in the optical WDM layer and the IP layer, which makes the applicability of PTF and VTF in multilayer multi-domain network feasible.  相似文献   

2.
Optical fiber networks have become the foundations of communication system to provide enormous transmission capacity with less cost. Connection blocking is an inherent attribute and influences optical networks’ performance, especially in multi-domain network scenarios. We analyze the reason and effect of blockings including routing blockings and signaling blockings. We regard the cause of signaling blockings as the information asynchronization in resource reservation process. We define the concept of Information Asynchronization Period to describe the effect of signaling blockings. To reduce signaling blockings in end-to-end optical path provisioning for multi-domain scenarios, we propose a novel network routing and control scheme, named Intra-Domain Immediate Reroute based Semi-Proactive Hierarchical Path Computation Element (IDIRSP H-PCE). The proposed routing and control scheme mainly consists of two parts, Semi-Proactive routing and Intra-Domain Immediate Reroute mechanism. Dynamic network simulations verify our proposed scheme. We compare the network performance with Reactive Backward Recursive PCE-based Computation (BRPC) based PCE, Reactive H-PCE and Proactive H-PCE. Simulation results indicate that IDIRSP H-PCE can provide connection with a very low blocking probability in light load case, which is close to Proactive H-PCE, and obviously better than BRPC based Reactive PCE and Reactive H-PCE. For heavy load case, IDIRSP H-PCE has a remarkably lower blocking probability than other three methods. Moreover, we test our proposed routing and control scheme when facing link faults. Simulation results indicate that IDIRSP H-PCE can greatly improve the traffic access rate and optimize the network performance.  相似文献   

3.
Traffic grooming in optical networks has gained significant importance in recent years due to the prevailing sub-wavelength traffic requirement of end-users. In this paper, a methodology for dynamic routing of fractional-wavelength traffic in WDM grooming networks is developed. To evaluate the performance of routing algorithms, a new performance metric that reflects the network utilization is also proposed. The performances of shortest-widest path, widest-shortest path, and available shortest path routing algorithms are evaluated on a class of WDM grooming networks by considering traffic of different capacity requirements. The effect of dispersity routing, where higher capacity requests are broken into multiple unit capacity requests, is also investigated. The most interesting counter-intuitive result that is observed is that increasing the grooming capability in a network could result in degrading the performance of the widest-shortest path algorithm.  相似文献   

4.
《Optical Fiber Technology》2013,19(4):309-318
Overlay IP/MPLS over WDM network is a promising network architecture starting to gain wide deployments recently. A desirable feature of such a network is to achieve efficient routing with limited information exchanges between the IP/MPLS and the WDM layers. This paper studies dynamic label switched path (LSP) routing in the overlay IP/MPLS over WDM networks. To enhance network performance while maintaining its simplicity, we propose to learn from the historical data of lightpath setup costs maintained by the IP-layer integrated service provider (ISP) when making routing decisions. Using a novel historical data learning scheme for logical link cost estimation, we develop a new dynamic LSP routing method named Existing Link First (ELF) algorithm. Simulation results show that the proposed algorithm significantly outperforms the existing ones under different traffic loads, with either limited or unlimited numbers of optical ports. Effects of the number of candidate routes, add/drop ratio and the amount of historical data are also evaluated.  相似文献   

5.
In this article, we consider traffic grooming and integrated routing in IP over WDM networks. The challenges of this problem come from jointly considering traffic grooming, IP routing, and lightpath routing and wavelength assignment (RWA). Due to the high bandwidth of optical fiber, there exists a mismatch between the capacity needed by an IP flow and that provided by a single lightpath. Traffic grooming is therefore used to increase the network utilization by aggregating multiple IP flows in a single lightpath. However, traffic grooming incurs additional delays that might violate Quality-of-Service (QoS) requirements of IP users. In this work, the tradeoff between traffic grooming and IP QoS routing is well-formulated as a mixed integer and linear optimization problem, in which the revenue from successfully provisioning IP paths is to be maximized. Problem constraints include IP QoS, routing, optical RWA, and the WDM network capacity. We propose a novel Lagrangean relaxation (LGR) algorithm to perform constraint relaxation and derive a set of subproblems. The Lagrangean multipliers are used in the proposed algorithm to obtain a solution in consideration of grooming advantage and resource constraints simultaneously. Through numerical experiments and comparisons between the proposed algorithm and a two-phase approach, LGR outperforms the two-phase approach under all experimental cases. In particular, the improvement ratio becomes even more significant when the ratio of IP flow to the wavelength capacity is smaller.  相似文献   

6.
《Optical Fiber Technology》2014,20(4):341-352
This paper proposes an efficient overlay multicast provisioning (OMP) mechanism for dynamic multicast traffic grooming in overlay IP/MPLS over WDM networks. To facilitate request provisioning, OMP jointly utilizes a data learning (DL) scheme on the IP/MPLS layer for logical link cost estimation, and a lightpath fragmentation (LPF) based method on the WDM layer for improving resource sharing in grooming process. Extensive simulations are carried out to evaluate the performance of OMP mechanism under different traffic loads, with either limited or unlimited port resources. Simulation results demonstrate that OMP significantly outperforms the existing methods. To evaluate the respective influences of the DL scheme and the LPF method on OMP performance, provisioning mechanisms only utilizing either the IP/MPLS layer DL scheme or the WDM layer LPF method are also devised. Comparison results show that both DL and LPF methods help improve OMP blocking performance, and contribution from the DL scheme is more significant when the fixed routing and first-fit wavelength assignment (RWA) strategy is adopted on the WDM layer. Effects of a few other factors, including definition of connection cost to be reported by the WDM layer to the IP/MPLS layer and WDM-layer routing method, on OMP performance are also evaluated.  相似文献   

7.
Software-defined networking (SDN) scheme decouples network control plane and data plane, which can improve the flexibility of traffic management in networks. OpenFlow is a promising implementation instance of SDN scheme and has been applied to enterprise networks and data center networks in practice. However, it has less effort to spread SDN control scheme over the Internet to conquer the ossification of inter-domain routing. In this paper, we further innovate to the SDN inter-domain routing inspired by the OpenFlow protocol. We apply SDN flow-based routing control to inter-domain routing and propose a fine-granularity inter-domain routing mechanism, named SDI (Software Defined Inter-domain routing). It enables inter-domain routing to support the flexible routing policy by matching multiple fields of IP packet header. We also propose a method to reduce redundant flow entries for inter-domain settings. And, we implement a prototype and deploy it on a multi-domain testbed.  相似文献   

8.
In multi-domain wavelength-division-multiplexing (WDM) optical networks, the inter-domain routing is a challenge since each single-domain cannot view the full network topology. At the same time, survivability is also an important issue in optical networks since the failures of fiber links or network nodes may lead to a lot of traffic being blocked. In this paper, we study the survivability in multi-domain WDM optical networks, and propose a new survivable mechanism called load balanced domain-by-domain routing (LBDDR). In LBDDR, in order to obtain the efficient inter-domain survivable routes, we present the domain-by-domain routing (DDR) method which can find the intra-domain sub-working path and sub-backup path in each single-domain to form the inter-domain working path and backup path for each demand. In order to reduce the blocking probability, we present the load balanced routing method which can encourage the traffic to be uniformly distributed on the links with more free wavelengths. Simulation results show that, compared with conventional mechanism, LBDDR can obtain better performances.  相似文献   

9.
Future transport networks will have to cope with the continuous growth of IP traffic. Furthermore, transport networks need to evolve so as to drastically reduce both deployment costs and operating expenses. A reasonable strategy to achieve this goal consists of simplifying the network architecture by reducing the number of layers. Assuming a peer model IP over optical network, we propose an integrated routing strategy that takes into account constraints and dynamic occupancy of both the IP and optical layers. The collaboration of both layers in the routing process leads to optimization of network performance. The main emphasis is on the implementation requirements of this grooming functionality using GMPLS-TE mechanisms. Simulation results show the benefits obtained by applying this strategy.  相似文献   

10.
Traffic grooming is an essential functionality of WDM optical networks to provision multi-granularity subwavelength connections. Depending on the number of lightpaths allowed in a connection route, traffic grooming can be classified as single-hop traffic grooming (SH-TG) and multi-hop traffic grooming (MH-TG). MH-TG is more general and resource-efficient than SH-TG, because it allows connections from different source-destination pairs to share the bandwidth of a lightpath. In this paper, we propose a MH-TG algorithm, namely the fixed-order multi-hop (FOMH) grooming algorithm, based on the fixed-alternate routing approach. We introduce the grooming node selection (GNS) problem in MH-TG and propose three grooming policies, namely exhaustive sequential (ES), limited-hop sequential (LHS) and load sharing (LS) policies, to address the GNS problem. These policies represent different trade-offs among blocking probability, computational complexity and transceiver requirements. Given that the analysis of MH-TG is a relatively unexplored area, we propose an analytical model to evaluate the blocking performance of MH-TG using FOMH and the LS grooming policy. To address the multi-layered routing and multi-rate connection characteristics of traffic grooming, we introduce a novel multi-level decomposition approach in our analytical model which decomposes traffic at four different levels, namely alternate path, connection route, lightpath and link levels. The model also addresses various factors that affect connection blocking probability. These factors include wavelength continuity constraint, channel continuity constraint and route dependence. The Erlang fixed-point approximation method is used to solve the analytical model. Numerical results show that analytical results match well with simulation results. We also evaluate the effect of the grooming policies, the number of virtual hops (lightpaths) within a connection route and the number of alternate paths on the performance of the grooming algorithm.  相似文献   

11.
The routing issues in multi-layer and multi-domain optical networks have drawn much attention in current research. With the introduction of the path computation element, routes can be calculated more efficiently in multi-domain optical networks. However, the optimal degree of routing approach in multi-layer and multi-domain optical networks is also determined by the clustering algorithms deployed for construction of hierarchical networks. Therefore, it is important to investigate the way to evaluate the impact of the clustering algorithm on the routing approach (e.g., blocking probability) in optical networks with dynamic traffic, which has not been studied sufficiently. In this paper, a novel method to describe and evaluate the clustered structures generated by different clustering algorithms for hierarchical optical networks is proposed. This method deploys a novel evaluation metric that represents blocking probability of clustered optical networks, so it can be used as guidelines for designing clustered structures. Besides theoretical analysis, simulations are carried out on different network topologies and clustered types to validate the effectiveness of the method presented.  相似文献   

12.
Protection approaches for dynamic traffic in IP/MPLS-over-WDM networks   总被引:3,自引:0,他引:3  
Due to the explosive growth of data-related traffic driven by the Internet, network reliability becomes an important issue. We investigate various protection approaches to handle failures for dynamic traffic demands in IP/MPLS-over-WDM networks. An LSP can be protected at either the IP/MPLS layer or the optical layer. In IP/MPLS layer protection, an LSP is protected by providing a link-disjoint backup LSP between its end nodes. In optical layer protection, an LSP is protected by the backup lightpath of each lightpath traversed by the LSP. We present two integrated routing algorithms: hop-based integrated routing algorithm and bandwidth-based integrated routing algorithm (BIRA) to set up the restorable bandwidth-guaranteed paths efficiently. Then we present a multilayer protection scheme for multiclass traffic in such networks. This scheme takes into account the different QoS and recovery requirements of the traffic to provide protection capability either at the MPLS layer or at the optical layer in a cost-effective manner. We use the connection blocking probability and number of optical-electrical-optical conversions as performance metrics to compare various protection approaches.  相似文献   

13.
Internet protocol (IP) traffic connections arrive dynamically at wavelength‐division multiplexing (WDM) network edges with low data rates compared with the wavelength capacity, availability, and quality‐of‐service (QoS) constraints. This paper introduces a scheme to be integrated into the control and management plane of IP/WDM networks to satisfy the availability and QoS required for IP traffic connections bundled onto a single wavelength (lightpath) in WDM networks protected by shared‐backup path protection (SBPP). This scheme consists of two main operations: (i) routing multi‐granular connections and traffic grooming policies, and (ii) providing appropriate shared protection on the basis of subscribers’ service‐level agreements in terms of data rate, availability, and blocking probability. Using the Markov chain process, a probabilistic approach is developed to conceive connection blocking probability models, which can quantify the blocking probability and service utilization of M:N and 1:N SBPP schemes. The proposed scheme and developed mathematical models have been evaluated in terms of bandwidth blocking ratio, availability satisfaction rate, network utilization, and connection blocking probability performance metrics. The obtained research results in this paper provide network operators an operational setting parameter, which controls the allocation of working and backup resources to dynamic IP traffic connections on the basis of their priority and data rate while satisfying their requirements in terms of bandwidth and availability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Survivability has been widely recognized as an important design issue for optical networks. In practice, as the network scale keeps expanding, this design problem becomes more critical. Due to scalability and domain privacy, designing the protection scheme in multi-domain networks is more difficult than that in single domain networks. The path computation element (PCE) is known as an efficient architecture to compute optimal traffic engineering (TE) paths in multi-domain multilayer networks. Based on the PCE architecture, we first propose a new dynamic domain-sequencing scheme that considers the load balance of inter-domain links and then propose an improved segment-shared protection approach called DDSP. It can provide 100% protection ability for multiple failures that each single domain has only one failed link. Finally, the protection based on the optimal dynamic domain-sequencing scheme, called OPT, is designed, to evaluate performance of our algorithm and to provide the good bounding for the dynamic domain-sequencing scheme with limited intra TE information. Simulation evaluation shows that the proposed scheme is effective in multi-domain path protection with more efficient resource utilization, lower blocking probabilities and less inter-domain cost. Furthermore, the performance of it is near to OPT.  相似文献   

15.
This paper addresses the problem of dynamically provisioning both low-speed unicast and multicast connection requests in mesh-based wavelength division multiplexing (WDM) optical networks. Several routing/provisioning schemes to dynamically provision both unicast and multicast connection requests are presented. In addition, a constraint-based grooming strategy is devised to utilize the overall network resources as efficiently as possible. Based on this strategy, several different sequential multicast grooming heuristics are first presented. Then, we devise a hybrid grooming approach and combine it with sequential approaches to achieve a grooming scheme that is biased toward serving multicast traffic demands in comparison with all other sequential grooming approaches. To achieve our objective, we decompose the problem into four subproblems: 1) routing problem; 2) light-tree-based logical-topology-design problem; 3) provisioning problem; and 4) traffic-grooming problem. The simulation results of the proposed schemes are compared with each other and with those of conventional nongrooming approaches. To the best of our knowledge, this is the first detailed paper to address and examine the problem of grooming dynamic multicast traffic demands.  相似文献   

16.
IP over WDM网络中,业务疏导能有效提高波长带宽利用率.然而,单一化的业务疏导机制难以满足不同业务的QoS要求,也很难做到经济合理地使用光路.提出了一种支持多优先级业务的疏导机制,该机制根据光路传输的时延和丢包特性来选择恰当的疏导路径,同时,该机制结合了抢占和流量分割技术,能有效地实现流量分割和多路抢占,降低了业务的阻塞概率.仿真结果显示,该疏导机制在保证业务QoS的同时,降低了高优先级业务的阻塞概率;在业务负载低时,能有效减少抢占.  相似文献   

17.
With the number of wavelengths on fibers keeps increasing, the size and the cost of Optical Cross-Connect (OXC) are greatly enhanced and then the control and management of optical switches become more and more complicated. Therefore, the technique called waveband switching is proposed to reduce the size and the cost of OXC; that is, to save the All-Optical (OOO) switching ports in OXC. However, the existing waveband switching algorithms are all limited in single-domain optical networks. Actually, with the scale of optical backbone keeps enlarging, the network is divided to multiple independent domains to perform the hierarchy routing for achieving the scalability. In order to reduce the size and the cost of OXC meanwhile to achieve the scalability in multi-domains, in this paper we propose a new heuristic algorithm called Waveband Grooming with Layered Auxiliary Graph (WGLAG) since the waveband grooming problem is the NP-hard to perform the inter-domain routing based on the virtual topology of multi-domain network and the intra-domain routing based on the physical topology of single-domain network. In intra-domain routing with waveband grooming of each single-domain, we propose the Layered Auxiliary Graph (LAG) that includes one virtual topology layer and multiple waveband-plane layers to compute a single-hop, or multi-hop or hybrid waveband route for each connection request based on the sub-path waveband grooming scheme. Simulation results show that, WGLAG not only can effectively save more switching ports to reduce the cost of OXC but also can obtain lower blocking probability than other algorithm.  相似文献   

18.
An Ant-Based Approach for Dynamic RWA in Optical WDM Networks   总被引:1,自引:0,他引:1  
In this paper, we propose a new ant-based algorithm for the dynamic routing and wavelength assignment (RWA) problem in optical WDM networks under the wavelength continuity constraint. Unlike conventional approaches, which usually require centralized global network information, our new RWA algorithm constructs the routing solution in a distributed manner by means of cooperative ants. To facilitate the ants’ foraging task, we adopt in our algorithm a probabilistic routing table structure for route selection. The new algorithm is highly adaptive in that it always keeps a suitable number of ants in the network to cooperatively explore the network states and continuously update the routing tables, so that the route for a connection request can be determined promptly by the current states of routing tables with only a small setup delay. Some new schemes for path scoring and path searching are also proposed to enhance the performance of our ant-based algorithm. Extensive simulation results upon three typical network topologies indicate that the proposed algorithm has a very good adaptability to traffic variations and it outperforms both the fixed routing algorithm and the promising fixed–alternate routing algorithm in terms of blocking probability. The ability to guarantee both a low blocking probability and a small setup delay makes the new ant-based routing algorithm very attractive for both the optical circuit switching networks and future optical burst switching networks  相似文献   

19.
Survivable traffic grooming (STG) is a promising approach to provide reliable and resource-efficient multigranularity connection services in wavelength-division-multiplexing (WDM) optical networks. In this paper, we study the STG problem in WDM mesh optical networks employing path protection at the connection level. Both dedicated-protection and shared-protection schemes are considered. Given network resources, the objective of the STG problem is to maximize network throughput. To enable survivability under various kinds of single failures, such as fiber cut and duct cut, we consider the general shared-risk-link-group (SRLG) diverse routing constraints. We first resort to the integer-linear-programming (ILP) approach to obtain optimal solutions. To address its high computational complexity, we then propose three efficient heuristics, namely separated survivable grooming algorithm (SSGA), integrated survivable grooming algorithm (ISGA), and tabu-search survivable grooming algorithm (TSGA). While SSGA and ISGA correspond to an overlay network model and a peer network model, respectively, TSGA further improves the grooming results from SSGA and ISGA by incorporating the effective tabu-search (TS) method. Numerical results show that the heuristics achieve comparable solutions to the ILP approach, which uses significantly longer running times than the heuristics.  相似文献   

20.

Dynamic routing and wavelength assignment problem in optical networks is a two-step problem that is influenced by the choice of a successful optimal path selection and wavelength assignment. Proper selection techniques reduce the number of wavelengths required in the network and thereby improves traffic grooming. Heuristic algorithms and integer linear programming models help in selection of route and wavelength separately. Hence, the computation time is large which makes the system slow. A cost function is computed which uses independent parameters in the network for the selection of route and wavelength for a call. The heuristic reduces computation time by combining the search of route and wavelength to be assigned. In addition, the network performance is analyzed with and without alternate routing along with proposed heuristics. The selection of proper route and wavelength finding technique is very essential since it improves the grooming factor of the network thereby allowing more traffic support by the network. Our objective is to investigate and propose a cost based heuristics for dynamic traffic routing and wavelength Assignment in WDM optical networks. For this we plan to develop cost functions and heuristics to compute the route and wavelength assignment strategy. Here, our objective is to reduce the computation time for selection of route and wavelength assignment strategy by weighted cost function. The function has to include network parameters for its processing. Our work provides an overview about DRWA by applying cost based heuristics in WDM networks. This paper explains the proposed cost function and its applications in line with selection of independent parameters. The details of other functions like cost function formulation, hop-based route assignment, available wavelength based route assignment, mathematical analysis of proposed cost function are also explained. Results and discussions based on the findings are presented.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号