首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Single domain GdBa2Cu7-δ (Gd123) bulk superconductors were fabricated in air by top-seeding melt-texture growth. Performance of the air-processed Gd123 was successfully enhanced by addition of both BaCO3 and BaCuO2−x , which suppress the formation of Gd1+x Ba2−x Cu3O7-δ solid solutions. The optimum doping amount ranges from 0.05 to 0.15, M BaCO3 and 0.05 to 0.1, M BaCuO2−x per molar Gd123. The distribution of the second phase particles was observed by scanning electron microscopy. A narrow band formed by Gd2BaCuO5 particle concentration appeared around the seeding zone in both ab plane and c-growth sector in Gd123 single grain. Trapped magnetic field density reached 0.67, T for sample with 24 mm in diameter and 8, mm in thickness and a high critical current density J c up to 91,200, A/cm2 was achieved at 77, K under self-field.  相似文献   

2.
Comparative studies of Meissner and shielding processes have been performed on variously sized samples of the solid solution (La1–x Sr x )2CuO4: (polycrystalline, powder, and single-crystalline) under various magnetic fields in the range 0.03–10 Oe. Considering the kinetics of the two processes, this systematic approach has indicated that the observed Meissner signal can be significantly low with the sample still being wholly superconductive. Based on this comparative study, the tetragonal region of (La1–x Sr x )2CuO4 withx greater than 0.105 has been concluded to be superconductive, suggesting the nonessential involvement of the buckling of the Cu-O-Cu-O bond in the CuO2 layer in the manifestation of superconductivity.  相似文献   

3.
The compound PrBa2Cu3O7 −y is not superconducting while most other RBa2Cu3O7 −y (R=rare earth) compounds exhibit superconductivity in the 90K range. The system PrBa2 −x Pr x Cu3O7 −x has been prepared to study the effect of excess Pr at the Ba site on the structure, resistivity and magnetic behaviour of this system. It is observed that single-phase compounds in the above series form forx=0·8—that is up to the composition Pr1·8Ba1·2Cu3O7 −y . While stoichiometric PrBa2Cu3O7 −y is orthorhombic, the compounds with excess Pr show tetragonal structure. Four-probe dc resistivity measurements show that all the single-phase compounds in the above series do not exhibit superconductivity and are semiconducting down to 12 K. Magnetic susceptibility measurements reveal deviation from Curie-Weiss behaviour starting at a characteristic temperature, which is taken to be the ordering temperature (T N ) of the Pr moments. BothT N and overall resistivity decrease with increasingx and may have a common origin.  相似文献   

4.
The results of our investigation on the specimens Bi4Ca3Sr3Cu4−x T xO y (T=Fe, Co, Ni,x⩽0.5) synthesized in air are presented. Fe and Co substituents result in the formation of Bi2Sr2CuO y -type of phase, with considerable depression ofT c of the main phase. However, Ni is completely soluble with Cu in this concentration range without significant depression of superconducting transition temperature (T c). This difference in the solubility behaviour of Fe and Co on the one hand and Ni on the other is explained taking into account ionic charge and coordination number mismatches.  相似文献   

5.
In the present paper, a modified self-flux technique has been successfully employed for the growth of pure and praseodymium substituted (partially) large single crystals of high temperature superconducting Y1−x Pr x Ba2Cu3O7−δ (x = 0·0,0·2,0·4). Typical sizes of the platy and bulky crystals of pure YBCO(123) material are ≈ 2 × 2 × 0·1 mm3 and 4 × 1 × 1 mm3, respectively. In case of Pr-substitution, the typical sizes of platy and bulky crystals of Y0·8Pr0·2Ba2Cu3O7−δ and Y0·6Pr0·4Ba2Cu3O7−δ materials are ≈ 2 × 3 × 0·1 mm3 and 5 × 1 × 1 mm3 and ≈ 1 × 1·5 × 0·1 mm3 and 7 × 0·2 × 0·1 mm3, respectively. The morphology and growth habit of the as-grown single crystals and the critical transition temperature (T c) of the oxygenated crystals were found to depend on the Pr-content. Paper presented at the poster session of MRSI AGM VI, Kharagpur, 1995  相似文献   

6.
We have investigated the effect of Fe substitution on the structural and superconducting properties of La2.5Y0.5CaBa3(Cu1–x Fe x )7O z system by Rietveld refinement of the neutron diffraction patterns of three samples with x = 0.02 (labelled B1), x = 0.06 (B2), and x = 0.10 (B3) along with X-ray diffraction, resistivity, AC susceptibility, and oxygen-content measurements. Samples B1, B2, and B3 are superconducting with T c R=0 values of 73, 62, and 41 K, respectively. Neutron diffraction studies confirm (i) the formation of a single phase tetragonal structure (space group P4/mmm) for all three samples, (ii) Ca and Y ions substitution at the La site concomitantly displaces La onto Ba sites, and (iii) increasing x from 0.02 to 0.10 increases oxygen content (the amount of oxygen per unit cell), as well as Cu(1)— O(4) and Cu(1)— O(1) bond lengths whereas Cu(2)— O(4) bond length decreases with corresponding decrease in T c to 41 K due to increasing occupancy of Fe ions at Cu(2) site. The change in bond lengths with oxygen content are essentially the same as those of Fe content (x). Present studies establish a correlation between the bond lengths (Cu(1)— O(1), Cu(1)— O(4), and Cu(2)— O(4)) and the measured T c values of three samples.  相似文献   

7.
The pressure dependence on the superconducting transition temperature (T c ) was investigated for the iron-based superconductors LaFeAsO1−x F x and SmFeAsO1−x F x . The T c ’s increase largely for LaFeAsO1−x F x with a small increase of pressure, while a sharp decrease of T c was observed for SmFeAsO1−x F x . The electrical resistivity measurements reveal pressure-induced superconductivity for undoped LaFeAsO and SmFeAsO. These pressure effects seem to be related to an anisotropic decrease of the lattice constants under high pressure from the x-ray diffraction measurements up to 10 GPa for the LaFeAsO1−x F x system.  相似文献   

8.
Magnetic shields of various high-temperature superconductors, YBa2Cu3O7−x (YBCO), YBa2Cu3O7−x -Ag composites (random inclusions as well as non-random coatings) and Bi2Sr2Ca2Cu3O x (BSCCO) were prepared by uniaxial as well as isostatic compression with various dimensions. The shielding properties were measured at 77 K for dc and ac magnetic fields in the range of frequencies from 100 Hz to 10 kHz. The critical penetration field (CPF), defined as the value of the applied magnetic field at which a detectable field was observed inside the cylinder, varied from cylinder to cylinder and also with the ageing of the cylinders in the case of YBCO shields. The highest value of CPF was 16 G at 77 K for YBCO shield prepared by isostatic compression. Even though the stability of BSCCO shields with respect to ageing is good, the CPF values are very low compared to those for YBCO. Detailed studies were performed in the case of YBCO shields. The CPF decreased as a function of time over a period of 90 days. The CPF decreased as the frequency of the applied field was increased. The wave form of the field inside the pot for a sinusoidal applied field was highly distorted and showed the presence of higher harmonics with appreciable amplitude. The wave form was Fourier-analysed to yield the field inside the shield along with the harmonics. The shields with Ag addition seem to give better performance at high fields.  相似文献   

9.
A series of zirconium sulphoselenide (ZrS x Se3−x , where x = 0, 0·5, 1, 1·5, 2, 2·5, 3) single crystals have been grown by chemical vapour transport technique using iodine as a transporting agent. The optimum condition for the growth of these crystals is given. The stoichiometry of the grown crystals were confirmed on the basis of energy dispersive analysis by X-ray (EDAX) and the structural characterization was accomplished by X-ray diffraction (XRD) studies. The crystals are found to possess monoclinic structure. The lattice parameters, volume, particle size and X-ray density have been carried out for these crystals. The effect of sulphur proportion on the lattice parameter, unit cell volume and X-ray density in the series of ZrS x Se3−x single crystals have been studied and found to decrease in all these parameters with rise in sulphur proportion. The grown crystals were examined under optical zoom microscope for their surface topography study. Hall effect measurements were carried out on grown crystals at room temperature. The negative value of Hall coefficient implies that these crystals are n-type in nature. The conductivity is found to decrease with increase of sulphur content in the ZrS x Se3−x series. The electrical resistivity parallel to c-axis as well as perpendicular to c-axis have been carried out in the temperature range 303–423 K. The results obtained are discussed in detail.  相似文献   

10.
A facile aqueous solution route has been employed to synthesize Ba x Sr1−x SO4 (0 ≤ x ≤ 1) solid solution nanocrystals at room temperature without using any surfactants or templates. The as-synthesized products were characterized by means of X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), scanning electron microscopy (SEM), and differential scanning calorimetry-thermogravimetry (DSC-TG). The Ba x Sr1−x SO4 solid solution nanocrystals exhibit an orthorhombic structure and an ellipsoidal-shaped morphology with an average size of 80–100 nm. The lattice parameters of Ba x Sr1−x SO4 solid solution crystals increase with increasing x value. However, they are not strictly coincident with the Vegard’s law, which indicates that the as-obtained products are non-ideal solid solutions. The Ba x Sr1−x SO4 solid solution nanocrystals have an excellent thermal stability from ambient temperature to 1300°C with a structural transition from orthorhombic to cubic phase at about 1111°C.  相似文献   

11.
The layer type MoSe x Te2−x (0 ≤x ≤ 2) have been grown in single crystalline form by chemical vapour transport technique using bromine as the transporting agent. The electrical resistivity and Hall mobility perpendicular to thec-axis of the crystals were measured at room temperature. The variation of the Seeback coefficient with temperature was also investigated.  相似文献   

12.
A new Cu0.5Tl0.5Ba2Ca3Cu4−y Zn y O12−δ (y=0, 1.0, 2.0, 3.0, 3.5) superconductor with four ZnO2 planes is reported. The structure of the material remains tetragonal for all Zn doping concentration. The substitution of Zn at CuO2 planar site was carried out following Cu0.5Tl0.5Ba2Ca3Cu4−y Zn y O12−δ (y=0, 1.0, 2.0, 3.0, 3.5) formula. Contrary to all previous studies of Zn doping in all copper oxide high temperature superconductors, the zero resistivity critical temperature T c(R=0), critical current density and quantity of diamagnetism increase with increased Zn concentration. The onset temperature of superconductivity in these samples was observed at 128 K and T c(R=0) at 122 K for y=3.5. The volume of the unit cell observed through X-ray diffraction scan is found to decrease with increase Zn doping; promoting an increase in Fermi vector K F and effective density of states which results in enhanced superconductivity parameters. The synthesis of Cu0.5Tl0.5Ba2Ca3Cu4−y Zn y O12−δ material by this method is highly reproducible.   相似文献   

13.
Using a Mori-Zwanzig projection operator procedure the relaxation function theory of doped two-dimensional Heisenberg antiferromagnetic (AF) system in the paramagnetic state is presented taking into account the hole subsystem as well as both the electron and AF correlations. At low temperatures the main contribution to the nuclear spin–lattice relaxation rate, 63(1/T 1), of plane 63Cu, arises from the AF fluctuations, and 17(1/T 1), of plane 17O, has the contributions from the wave vectors in the vicinity of (π,π) and small q ∼ 0. The effects of thermal spin-wave damping Γ q on 17(1/T 1) in lightly doped regime are investigated, suggesting either a polynomial of up to third order (not simply (T/J)3) or exponential temperature dependence of Γ q at low temperatures. It is shown that the theory is able to explain the main features of experimental data on temperature and doping dependence of 17,63(1/T 1) in the paramagnetic state of La2− x Sr x CuO4 compounds.  相似文献   

14.
A modified chemical deposition process is employed for the preparation of thin-film (CdS) x -(PbS)1 −x composites with 0·2 ≤x ≤ 0·8. Cadmium sulphate, lead acetate and thiourea are used as the basic source materials. The electrical conductivity is found to decrease with increasing composition parameterx up to 0·5 and increase for further increase inx. The composites are polycrystalline as is revealed from XRD and microscopic observations and show phases of both cubic and hexagonal CdS, cubic CdO and PbS, and tetragonal PbO and PbO2. Additional peaks of free elemental Cd and S have also been observed. For all the phases no significant variation in lattice parameters withx has been observed. The optical absorption studies show the presence of four well-defined absorption edges at approximately 0·45 eV, 1·05eV, 1·80 eV and 2·35 eV, at the same energies for allx values. The absorption coefficient is of the order of 104 cm−1 and mode of band-to-band transition is of the direct type.  相似文献   

15.
Here we present a reviewed phase diagram of the high-T c superconducting YBa2Cu3O6+ x compound, finely mapped in the strongly underdoped region (0 < x < 0.5), from the pure antiferromagnetic state to the superconducting regime. The Neèl and spin freezing temperatures have been measured by μSR experiments while the hole density per Cu atom in the CuO2 planes has been determined from the resistive T c and from Seebeck coefficients at 290 K. The phase diagram is discussed in comparison to those of La2− x Sr x CuO4 and Y1− x Ca x Ba2Cu3O6 cuprate systems.  相似文献   

16.
Bulk materials and thin films of pure and homogeneous YBa2Cu3O7−x and Bi2Sr2CaCu2O8+x compounds were prepared by a nanocomposite solution-sol-gel (SSG) method. The superconducting oxides of YBa2Cu3O7−x and Bi2Sr2CaCu2O8+x were prepared at very low temperatures i.e. 750°C and 850°C, respectively by SSG method. Pellets sintered from these nanophasic sol powders showed sharp resistivity drops atT c ∼ 90°K for YBa2Cu3O7−x andT c∼67°K for Bi2Sr2CaCu2O8+x . Thin films were prepared using triphasic sol of Y, Ba, Cu and tetraphasic sol of Bi, Sr, Ca and Cu on MgO and SrTiO3 substrates. The triphasic sol coated on SrTiO3 substrates and calcined at 800°C for 12h showed the formation of superconducting phase, YBa2Cu3O7−x with preferred orientation along theC-axis. X-ray diffraction patterns of the Bi2Sr2CaCu2O8+x films on MgO substrate showed the formation of the superconducting phase with preferential orientation along the C-axis and the microwave absorption data as a function of temperature of this film revealed the onset temperature to be 90°K.  相似文献   

17.
The effect of self-doping and substitution of elements of higher and lower electronegativity, such as Bi, Hg, Nb, Pd, Li, Na, K, on the superconducting properties of Cu0.5Tl0.5−x M x Ba2Ca2Cu3O10−δ with x=0.25 is investigated. These experiments demonstrated that the elements of lower electronegativity such as Li, Na, and K can easily liberate their outer most s-electron that could be supplied to the conducting CuO2 planes of Cu0.5Tl0.5−x M x Ba2Ca2Cu3O10−δ superconductor, and as a result, we get enhanced superconducting properties. However, highly electro-negative elements hinder the transfer of carriers from charge reservoir layer to the conducting CuO2 planes and promote inferior superconducting properties. In the present studies, we have investigated the effect of post-annealing in nitrogen and oxygen atmospheres for optimizing the carriers in conducting CuO2 planes of Cu0.5Tl0.5−x M x Ba2Ca2Cu3O10−δ (M=Bi,Hg,Nb,Pd,Li,Na,K) superconductor. These studies are important since the density of carriers in the conducting CuO2 planes determines the Fermi-vector k F and Fermi velocity v F of the carriers, which ultimately brings about the final superconducting state of the system.   相似文献   

18.
EnhancedT c in calcium-free Tl compounds of the series Tl m Ba2Ca n−1Cu n O x (2201) has been reported. Three different starting compositions (2201, 1201 and 2202) were studied extensively with varying conditions of preparation. Under optimized conditions (sintering temperature 970°C and duration 3–10 min) the highestT c(onset) ranges from 103 K to ∼ 115 K andT c (zero) ∼ 95 K was found. XRD studies showed the transformation of all the three nominal compositions into 2201 phase with differentT cs.  相似文献   

19.
BiPb-2234 bulk samples with nominal composition of the compound Bi1.7Pb0.3−x Nd x Sr2Ca3Cu4O12+y (BSCCO) (0.025≤x≤0.10) have been prepared by the melt-quenching method. The effects of Nd substitution on the BSCCO system have been investigated by electrical resistance (RT), scanning electron microscopy (SEM), X-ray diffraction (XRD) and magnetic hysteresis measurements. It has been the BSCCO (2212) low-T c phase is formed for all the substitution levels, together with the BSCCO (2223) high-T c phase. The results obtained suggest that with increasing Nd3+ doping for Pb2+ the (2223) phase existing in undoped BSCCO gradually transforms into the (2212) phase and hence all of the samples have a mixed phase formation. The RT result of the samples show two-step resistance transition; first transition occurs at 100 K and second in an interval of 80–90 K, depending on the Nd concentration. We have found that the magnetization decreases with increasing temperature in agreement with the general characteristic of the high-T c materials. The samples exhibit weak field dependence particularly after 2 T and changes on the magnetic hysteresis, MH curve rather small compared to the conventional superconducting materials. The maximum critical current density, J c, value was calculated to be 8.51×105 at 4.2 K and J c decreases with increasing temperature and the substitution level.   相似文献   

20.
The insulating and metallic behavior of the grain-boundary weak links has been studied in thallium rich and the samples with small amount of thallium in the charge reservoir layer of Cu1−x Tl x Ba2Ca3Cu4O12−δ superconductor thin films. The influence of the nature of grain boundaries on the inter-granular critical current density (J c) has also been investigated. From the power law dependence of H ac∼(1−T p/T c) n , it was observed that n=1 gives a best fit for the J c of thallium rich samples and n=2 provides a best fit for the J c of the samples with small amount of thallium. The polycrystalline thin film samples showing the power law dependence of J c as n=1 make superconductor-insulator-superconductor (SIS) type while the samples with n=2 follow superconductor-normal metal-superconductor (SNS) types of Josephson junctions. The insulating grain boundaries decrease the inter-granular Josephson coupling and hence the transport properties are suppressed.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号