首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hydralazine was administered at cardiac catheterization to eight children with a ventricular septal defect (age: 2.2-8.8 years), and the extent of afterload reduction was determined using aortic input impedance and wall stress. The pulmonary to systemic blood flow ratio decreased from 2.2 +/- 0.8 to 1.8 +/- 0.4 (p < 0.05) and the pulmonary systemic resistance ratio increased from 0.11 +/- 0.08 to 0.13 +/- 0.10 (p < 0.05) after hydralazine administration. Hydralazine reduced mean aortic pressure and the amplitude of the late systolic peak of the aortic pressure wave. Peak flow velocity in the descending aorta increased from 62 +/- 14 to 81 +/- 24 cm/sec (p < 0.05). Peripheral resistance decreased significantly from 13.3 +/- 5.9 to 6.6 +/- 3.7 10(3) dyn sec/cm3 (p < 0.05). The modulus of the first harmonic, indicating pulse wave reflection, decreased from 1196 +/- 575 to 815 +/- 382 dyn sec/cm3 (p < 0.05). The characteristic impedance, indicating aortic stiffness, did not change. End-systolic wall stress decreased significantly from 54.4 +/- 16.7 to 34.8 +/- 10.2 g/cm2 (p < 0.01). Hydralazine acutely achieved afterload reduction by reducing both peripheral resistance and pulse wave reflection, and increased stroke volume.  相似文献   

3.
To determine the relationship between quantitative Doppler parameters of portal, hepatic, and splanchnic circulation and hepatic venous pressure gradient (HVPG), variceal size, and Child-Pugh class in patients with alcoholic cirrhosis, we studied forty patients with proved alcoholic cirrhosis who underwent Doppler ultrasonography, hepatic vein catheterization, and esophagoscopy. The following Doppler parameters were recorded: time-averaged mean blood velocity, volume flow of the main portal vein flow, and resistance index (RI) of the hepatic and of the superior mesenteric artery. Doppler findings were compared with HVPG, presence and size of esophageal varices, and Child-Pugh class. There was a significant inverse correlation between portal velocity and HVPG (r = -.69), as well as between portal vein flow and HVPG (r = -.58). No correlation was found between RI in the hepatic artery or superior mesenteric artery and HVPG. No correlation was found between portal vein measurements and presence and size of varices. Severe liver failure was associated with lower portal velocity and flow. In patients with alcoholic cirrhosis, only portal vein blood velocity and flow, but neither hepatic nor mesenteric artery RI, are correlated to the severity of portal hypertension and to the severity of liver failure.  相似文献   

4.
5.
In septic shock the inhibition of inducible nitric oxide synthase (iNOS) could be of therapeutic value. However, side effects have to be investigated. Therefore we studied the effects of chronic NOS inhibition on the level of iNOS expression in a model of chronic liver inflammation induced by Corynebacterium parvum (C. parvum) which causes sustained iNOS expression in the liver. NOS inhibitors decreased the rise in plasma levels and urinary excretion of nitrite/nitrate by about 50%; however, iNOS mRNA and protein were increased to 200% and 150%, respectively. Thus chronic inhibition of NOS can result in an increase in iNOS mRNA level and protein under conditions when iNOS is expressed. This could result in an overproduction of NO upon removal of the NOS-inhibitor.  相似文献   

6.
Plant responses to red and far-red light are mediated by a family of photoreceptors called phytochromes. Arabidopsis thaliana seedlings lacking one of the phytochromes, phyB, have elongated hypocotyls and other tissues, suggesting that they may have an alteration in hormone physiology. We have studied the possibility that phyB mutations affect seedling gibberellin (GA) perception and metabolism by testing the responsiveness of wild-type and phyB seedlings to exogenous GAs. The phyB mutant elongates more than the wild type in response to the same exogenous concentrations of GA3 or GA4, showing that the mutation causes an increase in responsiveness to GAs. Among GAs that we were able to detect, we found no significant difference in endogenous levels between wild-type and phyB mutant seedlings. However, GA4 levels were below our limit of detectability, and the concentration of that active GA could have varied between wild-type and phyB mutant seedlings. These results suggest that, although GAs are required for hypocotyl cell elongation, phyB does not act primarily by changing total seedling GA levels but rather by decreasing seedling responsiveness to GAs.  相似文献   

7.
Aminoguanidine (AG), a selective inhibitor of inducible nitric oxide synthase, prevented the clinical development of experimental autoimmune encephalomyelitis (EAE) with a reduction in inflammation and demyelination. Administration of AG reduced the expression of nitrosotyrosine in inflammatory lesions in the central nervous system. Cytokine expression, determined by semiquantitative PCR, revealed increased expression of IFN-gamma, IL-10, and TGF-beta, which was associated with protection from EAE, and reduced TNF-alpha, associated with the development of EAE. Furthermore, AG blocked the secretion of nitric oxide, TNF-alpha, and PGE2 in astrocyte cultures. AG did not influence the proliferation response of T cells to a pathogenic epitope of myelin basic protein. Down-regulation of nitric oxide by AG has widespread consequences for cytokine production in central nervous system inflammation and prevents EAE.  相似文献   

8.
Changes in water intake after intraperitoneal injection of a nitric oxide synthase (NOS) inhibitor was studied in the rat. Administration of NW-nitro-L arginine methyl ester (L-NAME) at a dose of 50 mg/kg attenuated osmotic thirst induced by intraperitoneal injection of hypertonic saline, but did not affect spontaneous intake of water and thirst induced by subcutaneous injection of angiotension II. Pretreatment with L-arginine significantly attenuated the inhibition of osmotic thirst evoked with subsequent L-NAME. Administration of NW-nitro-D-arginine methyl ester (D-NAME) altered neither the spontaneous nor the osmotic drinking behavior. These findings suggest that NO may affect the osmotically induced drinking.  相似文献   

9.
In the present study, we tested the hypothesis that lipopolysaccharide (LPS)-induced expression of nitric oxide synthase (iNOS) by splenocytes is modulated through the activation of endogenous opioids in the central nervous system. The initial studies determined the parameters of LPS-induced expression of iNOS by splenocytes. Rats were injected with LPS at doses of 0, 1, 10, 100, and 1000 microg/kg, and measures of both iNOS mRNA and protein showed a dose-dependent increase in expression. In a time course study, rats received 100 microg/kg LPS and were killed at 0, 2, 4, 8, and 16 h postinjection. Both iNOS mRNA and protein expression was detectable at the 2-h time point, with peak expression occurring at 8 h. To evaluate the involvement of endogenous opioids, the opioid receptor antagonist naltrexone was administered at 0, 0.1, 1, or 10 mg/kg s.c. in combination with LPS (100 microg/kg), with a second injection of naltrexone at the same dose 4 h after the injection of LPS. Naltrexone induced a pronounced dose-dependent reduction in iNOS mRNA and protein expression by splenocytes. The modulation of iNOS expression occurs via central opioid receptors as intracerebroventricular administration but not peripheral administration of N-methylnaltrexone, the quaternary form of naltrexone that does not readily cross the blood-brain barrier, reduced the expression of iNOS. For all of the manipulations, nitrite/nitrate levels in the plasma showed effects similar to those for iNOS mRNA and protein. Collectively, these findings indicate that central opioid receptors are involved in the in vivo regulation of splenic nitric oxide production.  相似文献   

10.
Cytokine-stimulated astrocytes and macrophages are potent producers of nitric oxide (NO), a free radical proposed to play an important role in organ-specific autoimmunity, including demyelinating diseases of the central nervous system. The aim of this study was to investigate effects of pentoxifylline (PTX), a phosphodiesterase inhibitor with immunomodulatory properties, on NO production and inducible NO synthase (iNOS) mRNA expression in rat astrocytes and macrophages. We have shown that PTX affects cytokine (interferon-gamma, IFN-gamma; interleukin-1, IL-1; tumour-necrosis factor-alpha, TNF-alpha)-induced NO production in both cell types, but in the opposite manner--enhancing in astrocytes and suppressive in macrophages. While PTX did not have any effect on enzymatic activity of iNOS in activated cells, expression of iNOS mRNA was elevated in astrocytes and decreased in macrophages treated with cytokines and PTX. Treatment with PTX alone affected neither NO production nor iNOS mRNA levels in astrocytes or macrophages. This study indicates involvement of different signalling pathways associated with iNOS induction in astrocytes and macrophages, thus emphasizing complexity of regulation of NO synthesis in different cell types.  相似文献   

11.
Murine macrophage nitric oxide synthase (NOS) was expressed in E. coli and purified in the presence (holoNOS) or absence (H4B-free NOS) of (6R)-tetrahydro-L-biopterin (H4B). Isolation of active enzyme required the coexpression of calmodulin. Recombinant holoNOS displayed similar spectral characteristics and activity as the enzyme isolated from murine macrophages. H4B-free NOS exhibited a Soret band at approximately 420 nm and, by analytical gel filtration, consisted of a mixture of monomers and dimers. H4B-free NOS catalyzed the oxidation of NG-hydroxy-L-arginine (NHA) with either hydrogen peroxide (H2O2) or NADPH and O2 as substrates. No product formation from arginine was observed under either condition. The amino acid products of NHA oxidation in both the H2O2 and NADPH/O2 reactions were determined to be citrulline and Ndelta-cyanoornithine (CN-orn). Nitrite and nitrate were also formed. Chemiluminescent analysis did not detect the formation of nitric oxide (*NO) in the NADPH/O2 reaction. The initial inorganic product of the NADPH/O2 reaction is proposed to be the nitroxyl anion (NO-) based on the formation of a ferrous nitrosyl complex using the heme domain of soluble guanylate cyclase as a trap, and the formation of a ferrous nitrosyl complex of H4B-free NOS during turnover of NHA and NADPH. NO- is unstable and, under the conditions of the reaction, is oxidized to nitrite and nitrate. At 25 degreesC, the H2O2-supported reaction had a specific activity of 120 +/- 14 nmol min-1 mg-1 and the NADPH-supported reaction had a specific activity of 31 +/- 6 nmol min-1 mg-1 with a KM,app for NHA of 129 +/- 9 microM. HoloNOS catalyzed the H2O2-supported reaction with a specific activity of 815 +/- 30 nmol min-1 mg-1 and the NADPH-dependent reaction to produce *NO and citrulline at 171 +/- 20 nmol min-1 mg-1 with a KM, app for NHA in the NADPH reaction of 36.9 +/- 0.3 microM.  相似文献   

12.
In a recent study, we found marked increases in nitric oxide (NO) production and endothelial and inducible NO synthase (eNOS and iNOS) expressions with calcium channel blockade in rats with chronic renal failure. This study was undertaken to determine whether enhanced NO production with calcium channel blockade is a direct effect of this therapy or a consequence of the associated hemodynamic and humoral changes. We tested the effects of a calcium channel blocker, felodipine (10(-5), 10(-6), and 10(-7) mol/L), on nitrate and nitrite (NOx) generation, Ca2+-dependent and -independent NOS activity, and eNOS and iNOS protein masses in proliferating and quiescent rat aortic endothelial cells in culture. Compared with vehicle alone, felodipine significantly increased NOx generation, Ca2+-dependent NOS activity, and eNOS protein mass in proliferating and quiescent endothelial cells. Felodipine did not modify the stimulatory action of 10% fetal calf serum on DNA synthesis (thymidine incorporation) and cell proliferation. Ca2+-independent NOS activity and iNOS protein expression were negligible and unaffected by calcium channel blockade. NOx production and NOS expression were greater in proliferating cells than in quiescent cells. Thus, calcium channel blockade upregulates endothelial NO production in vitro, confirming our previous in vivo study. This observation indicates that the reductions in cytosolic [Ca2+] and vasodilation with calcium channel blockade are not only due to inhibition of Ca2+ entry but also to an NO-cGMP mediated mechanism.  相似文献   

13.
Triggering of RAW 264.7 cells with a cecropin A-melittin hybrid peptide (CA(1-8)M(1-18)) promoted a rapid rise in the intracellular calcium concentration that was followed, after a lag period of 6 h, by nitric oxide synthesis through the expression of the cytokine-inducible form of nitric oxide synthase (type II NOS or iNOS). The maximal effect was obtained at peptide concentrations in the 2 to 5-microM range. Simultaneous incubation with the peptide and LPS abrogated the nitric oxide synthesis elicited after LPS treatment of the cells. CA(1-8)M(1-18) induced a rapid activation of nuclear factor kappaB as evidenced by the presence of p50/p65 heterodimers of the nuclear factor kappaB/c-Rel family in the nuclei of activated cells. This peptide also activated the reporter activity of cells transfected with a plasmid harboring a 1-kb fragment corresponding to the 5'-flanking region of the murine iNOS gene. CA(1-8)M(1-18) promoted apoptotic cell death at concentrations below 1 to 2 microM, whereas higher concentrations altered the plasma membrane integrity. These results suggest the involvement of multiple intracellular signaling pathways in the mechanism by which this peptide elicits macrophage triggering.  相似文献   

14.
BACKGROUND: The role of endogenous nitric oxide (NO) in the regulation of pulmonary vascular tone is complex. Inhibition of endogenous NO synthase, potentially through upregulation of guanylyl cyclase, results in an increase in potency of nitrovasodilators in the systemic circulation. This study considered whether inhibition of endogenous NO synthase would increase the potency of nitrovasodilators, but not of cyclic adenosine monophosphate-dependent vasodilators, in the pulmonary vasculature. METHODS: We used the isolated buffer-perfused rabbit lung. Preparations were randomized to receive either pretreatment with NG-nitro-L-arginine methyl ester (or L-NAME, an inhibitor of endogenous NO synthase) or no pretreatment. Stable pulmonary hypertension was then produced by infusing the thromboxane A2 analog U46619. The dose-response characteristics of two nitrovasodilators, sodium nitroprusside and nitroglycerin, and two nonnitrovasodilators, prostaglandin E2 and 5'-N-ethylcarboxamidoadenosine, were studied. RESULTS: Inhibition of endogenous NO synthase caused no significant changes in baseline pulmonary artery pressure but did significantly reduce the U46619 infusion rate required to produce pulmonary hypertension. Pretreatment with L-NAME (vs. no L-NAME) resulted in significantly lower values of the log median effective dose with sodium nitroprusside and nitroglycerin. In contrast, pretreatment with L-NAME resulted in no changes in the dose-response characteristics of the cyclic adenosine monophosphate-mediated, NO-independent vasodilators prostaglandin E1 and 5'-N-ethylcarboxamidoadenosine. CONCLUSIONS: These data suggest that endogenous NO synthase is not an important regulator of basal pulmonary tone in this model but is an important modulator of pulmonary vascular responses to vasoconstriction and to nitrovasodilators. The pulmonary vasodilator effects of nitrovasodilators, but not of nonnitrovasodilators, may depend on the level of activity of NO synthase.  相似文献   

15.
The role of nitric oxide (NO) in the cholinergic regulation of heart rate (HR) recovery from an aspect of simulated exercise was investigated in atria isolated from guinea pig to test the hypothesis that NO may be involved in the cholinergic antagonism of the positive chronotropic response to adrenergic stimulation. Inhibition of NO synthesis with NG-monomethyl-L-arginine (L-NMMA, 100 micro M) significantly slowed the time course of the reduction in HR without affecting the magnitude of the response elicited by bath-applied ACh (100 nM) or vagal nerve stimulation (2 Hz). The half-times (t1/2) of responses were 3.99 +/- 0.41 s in control vs. 7. 49 +/- 0.68 s in L-NMMA (P < 0.05). This was dependent on prior adrenergic stimulation (norepinephrine, 1 micro M). The effect of L-NMMA was reversed by L-arginine (1 mM; t1/2 4.62 +/- 0.39 s). The calcium-channel antagonist nifedipine (0.2 micro M) also slowed the kinetics of the reduction in HR caused by vagal nerve stimulation. However, the t1/2 for the reduction in HR with antagonists (2 mM Cs+ and 1 micro M ZD-7288) of the hyperpolarization-activated current were significantly faster compared with control. There was no additional effect of L-NMMA or L-NMMA+L-arginine on vagal stimulation in groups treated with nifedipine, Cs+, or ZD-7288. We conclude that NO contributes to the cholinergic antagonism of the positive cardiac chronotropic effects of adrenergic stimulation by accelerating the HR response to vagal stimulation. This may involve an interplay between two pacemaking currents (L-type calcium channel current and hyperpolarization-activated current). Whether NO modulates the vagal control of HR recovery from actual exercise remains to be determined.  相似文献   

16.
BACKGROUND: The role of nitric oxide synthase in myocardial ischemia-reperfusion injury is complex. Our hypothesis was that inducible nitric oxide synthase has a role in the regulation of coronary flow after ischemia. METHODS: Four groups of isolated blood-perfused rabbit hearts underwent sequential periods of perfusion, ischemia, and reperfusion (20, 30, and 20 minutes). Two groups underwent 40 minutes of perfusion. Ischemic groups received saline vehicle, N omega-nitro-L-arginine methyl ester (L-NAME) or the highly specific inducible nitric oxide synthase inhibitor 1400W in low or high doses during reperfusion. Two nonischemic groups were treated with saline vehicle or 1400W during the last 20 minutes of perfusion. Left ventricular developed pressure and coronary flow were measured after each perfusion period. Ventricular levels of myeloperoxidase and cyclic guanosine monophosphate were measured at the end of the second perfusion period. RESULTS: Coronary flow was significantly increased in both 1400W groups versus L-NAME (p < 0.001) and in high-dose 1400W versus control (p < 0.001). Coronary flow was not significantly different between the nonischemic groups. Left ventricular developed pressure was not significantly different among the ischemic groups or between the two nonischemic groups. There were no differences in cyclic guanosine monophosphate levels in any of the ischemic hearts. Myeloperoxidase levels were significantly elevated in L-NAME versus high-dose 1400W, nonischemic 1400W, and nonischemic saline groups (p < 0.02). CONCLUSIONS: Highly selective inhibition of inducible nitric oxide synthase results in increased coronary flow after ischemia but not after continuous perfusion. This occurs with decreased neutrophil accumulation and a trend toward increased contractility without elevation of cyclic guanosine monophosphate levels.  相似文献   

17.
Nitric oxide (NO) is a critical mediator of various biological functions. NO is generated from L-arginine by nitric oxide synthase (NOS), which has three isoforms; endothelial-type NOS (eNOS) and brain-type NOS (bNOS) are constitutive enzymes, and inducible-type NOS (iNOS) is expressed after stimulation. We investigated the expression of NOS in normal human skin by an immunohistochemical technique and western blotting analysis. In human skin, epidermal keratinocytes and the outer root sheath were labeled with not only eNOS antibody but also with iNOS antibody. Both eNOS and iNOS protein in epidermal keratinocytes were confirmed by western blotting. eNOS immunoreactivity was observed in endothelial cells, fibroblasts, the arrector pili muscle, apocrine secretory gland, eccrine coiled duct, and eccrine secretory gland. bNOS immunoreactivity was observed in mast cells. No staining with anti-bNOS antibody was observed in any other cell type. Our present findings suggest that epidermal keratinocytes in normal human skin contain both eNOS and iNOS.  相似文献   

18.
Articles in this issue by A. C. Casiglia, A. LoCoco, and C. Zappulla; D. S. Crystal, H. Watanabe, K. Weinfurt, and C. Wu; M. Keller, N. Edelstein, C. Schmid, F. Fang, and G. Fang; and J. J. Han, M. D. Leichtman, and Q. Wang are discussed according to (a) the extent to which cultural variability can be reconciled with developmental theory and (b) the dimensions of cultural variability that matter most for development. It is argued that (a) cross-cultural research needs to be predicted on a model of how culture interacts with the forces that underlie and guide development and (b) the interpretation of cross-cultural research is severely limited without the direct measurement of the specific culture-related variables and processes that are hypothesized to account for diversity in development. Finally, within-culture variability needs to be studied in conjunction with between-culture variability so that a full model of diversity and development can be constructed.  相似文献   

19.
We have previously reported that stimulation of astrocyte cultures by particular agonists and calcium ionophores induces cyclic GMP formation through activation of a constitutive nitric oxide synthase (NOS) and that astrocytes from cerebellum show the largest response. In the present work we have used rat cerebellar astrocyteenriched primary cultures to identify and characterise the isoform of NOS expressed in these cells. The specific NOS activity in astrocyte homogenates, determined by conversion of [3H]arginine to [3H]citrulline, was ten times lower than in homogenates from cerebellar granule neurons. Upon centrifugation at 100,000 g, the astroglial activity was recovered in the supernatant, whereas in neurons around 30% of the activity remained particulate. The cytosolic NOS activities of both astrocytes and granule neurons displayed the same Km for L-arginine, dependency of calcium, and sensitivity to NOS inhibitors. Expression of NOS-I in astrocyte cytosolic fractions was revealed by Western blot with a specific polyclonal antiserum against recombinant NOS-I. Double immunofluorescence labelling using anti-glial fibrillary acidic protein (GFAP) and anti-NOS-I antibodies revealed that a minor population of the GFAP-positive cells, usually in clusters, presented a strong NOS-I immunostaining that was predominantly located around the nuclei and had a granular appearance, indicating association with the endoplasmic reticulum-Golgi system. Astrocytes of stellate morphology also showed immunoreactivity in the processes. Similar staining was observed with the avidin-biotin-peroxidase complex using different anti-NOS-I antisera. With this method the majority of cells showed a weak NOS-I immunoreactivity around the nuclei and cytosol. A similar pattern was observed with the NADPH-diaphorase reaction. These results demonstrate that the NOS-I expressed in astrocytes presents the same biochemical characteristics as the predominant neuronal isoform but may differ in intracellular location.  相似文献   

20.
BACKGROUND: Nitric oxide (NO) is synthesized by inducible nitric oxide synthase (iNOS) and plays an important role in tumor growth and angiogenesis. NO generation by iNOS also influences the cytotoxicity of macrophages and tumor-induced immunosuppression. Before now, the expression of iNOS in prostate carcinoma tissue had not been determined. METHODS: In this study, tissue sections from 16 patients with prostate carcinoma were studied immunohistochemically and compared with tissue specimens from 10 patients with benign hyperplasia. RESULTS: Positive iNOS immunostaining was detected in all sections from patients with prostate carcinoma. The malignant epithelial cells were highly positive. The antibody against iNOS also marked round cells, which had the same cell shape as that observed for macrophages. These cells were located in stroma and epithelium adjacent to tumor islets. However, round cells in benign tissue stained negative for iNOS. None of the benign hyperplasia specimens stained positive for iNOS immunohistochemically. CONCLUSIONS: Prostate carcinoma tissue had a high iNOS content, whereas benign tissue did not. The authors suggest that epithelial iNOS expression can be used as a specific immunohistochemical marker for prostate carcinoma. NO generation by iNOS may play multiple roles in the development of this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号