首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Covalent modification of the π‐electron basal planes of graphene enables the formation of new materials with enhanced functionality. An electrochemical method is reported for the formation of what is referred to as a Hyperstage‐1 graphite intercalation compound (GIC), which has a very large interlayer spacing d001 > 15.3 Å and contains disordered interstitial molecules/ions. This material is highly activated and undergoes spontaneous exfoliation when reacted with diazonium ions to produce soluble graphenes with high functionalization densities of one pendant aromatic ring for every 12 graphene carbons. Critical to achieving high functionalization density is the Hyperstage‐1 GIC state, a weakening of the van der Waals coupling between adjacent graphene layers, and the ability of reactants to diffuse into the disordered intercalate phase between the layers. Graphene functionalization with 3,5‐dinitrophenyl groups provides for exceptional dispersibility (0.24 mg mL?1) in N,N‐dimethylformamide and for conjugation with amines.  相似文献   

2.
Large-scale graphene oxide (GO) with adjustable resistivity was synthesized from graphite via an electrochemical method using KCl solution as an effective electrolyte. During the exfoliation process, electrostatic force intercalates chloride ions between the expanded graphite layers on the anode. These chloride ions form small gas bubbles between the graphite layers in the electrochemical reaction. It is believed that the gas bubbles expand the gap between graphite sheets and produce a separating force between adjacent graphene layers. This separating force overcomes the Van der Waals force between adjacent sheets and exfoliates graphene layers from the starting graphite. Because the graphene is electrochemically oxidized by chorine during the exfoliation, the exfoliated GO sheets are hydrophilic and easily dispersed in the electrolyte solution. The GO solution prepared by the electrochemical exfoliation can be simply sprayed or spin-coated onto any substrate for device applications. The measured average thicknesses of a monolayer, bilayer, and trilayer exfoliated GO on SiO2 substrate were 1.9, 2.8, and 3.9 nm, respectively. It was observed that the measured resistance of the exfoliated GO sheets increases due to electrochemical oxidation in the solution. This electrochemical approach offers a low-cost and efficient route to the fabrication of graphene based devices.  相似文献   

3.
We have demonstrated a fast, versatile, and scalable approach to synthesize high-quality few layer graphene sheets with low defect ratio and high crystallinity produced from exfoliation of graphite flakes in DMF by using probe sonication. The effect of sonication time on degree of exfoliation and number of graphene layers has been fully investigated. The degree of exfoliation of graphene sheets as a function of sonication time has been successfully analyzed by XRD, UV-Vis spectroscopy, TEM, and BET studies. The morphological changes at different sonication times have also been observed by SEM. A structural and defect characterization of graphene sheets has been discussed in detail by Raman spectroscopic technique. The shift in position of 2D Raman band and its de-convolution provided information about formation of multi to few layer graphene sheets with sonication. Moreover, Raman results are highly consistent with TEM studies as per number of graphene layers is concerned.  相似文献   

4.
Graphite's lubricating properties due to the “weak” interactions between individual layers have long been known. However, these interactions are not weak enough to allow graphite to readily exfoliate into graphene on a large scale. Separating graphite layers down to a single sheet is an intense area of research as scientists attempt to utilize graphene's superlative properties. The exfoliation and processing of layered materials is governed by the friction between layers. Friction on the macroscale can be intuitively understood, but there is little understanding of the mechanisms involved in nanolayered materials. Using molecular dynamics and a new forcefield, graphene's unusual behavior in a superlubric state is examined, and the energy dissipated between two such surfaces sliding past each other is shown. The dependence of friction on temperature and surface roughness is described, and agreement with experiment is reported. The accuracy of the simulated behavior enables the processes that drive exfoliation of graphite into individual graphene sheets to be described. Taking into account the friction between layers, a peeling mechanism of exfoliation is predicted to be of lower energy cost than shearing.  相似文献   

5.
We produced a type of graphite oxide with the interlayer spacing of 2.09 nm by treating conventional graphite oxide with γ-rays at an absorbed dose of 200 kGy in air. The expansion of interlayer distance should be attributed to the increased amounts of topological defects and then the improved steric hindrance between interlayers. Due to the decomposition of water molecules in graphite oxide by γ-rays, the reductive species were produced so that graphite oxide was partially reduced. It is also speculated to be the main mechanisms for alteration of oxygen groups. The change of carbon chain structures and oxygen groups were further supported by X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. This simple and effective method of making graphite oxide with d-spacing of 2.09 nm by irradiating it in air is of interest not only for its easier intercalation and exfoliation than pristine one, but also for its potential to prepare graphene sheets with high percent of monolayers.  相似文献   

6.
天然石墨是具有片层结构的含碳无机材料,层间由范德华力连接,可用物理或化学方法将其它分子、原子、离子甚至原子团插入其层间,生成石墨层间化合物(GIC);GIC经高温膨胀可得到体积为其几百倍的膨胀石墨(EG);在超声粉碎时,膨胀石墨上的石墨微片剥离,得到纳米石墨微片(NanoG)。近年来,富勒烯(Fullerence)、碳纳米管(CNT)、石墨烯(Graphene)的先后开发,为石墨家族注入新的活力,并为其应用开辟了新的空间。系统论述了天然石墨及其改性产物如EG、NanoG、Graphene、CNT、Fullerence的结构、制备方法、性质及用途。  相似文献   

7.
A facile and high‐yield approach to the preparation of few‐layer graphene (FLG) by electrochemical intercalation exfoliation (EIE) of expanded graphite in sulfuric acid electrolyte is reported. Stage‐1 H2SO4‐graphite intercalation compound is used as a key intermediate in EIE to realize the efficient exfoliation. The yield of the FLG sheets (<7 layers) with large lateral sizes (tens of microns) is more than 75% relative to the total amount of starting expanded graphite. A low degree of oxygen functionalization existing in the prepared FLG flakes enables them to disperse effectively, which contributes to the film‐forming characteristics of the FLG flakes. These electrochemically exfoliated FLG flakes are integrated into several kinds of macroscopic graphene structures. Flexible and freestanding graphene papers made of the FLG flakes retain excellent conductivity (≈24 500 S m?1). Three‐dimensional (3D) graphene foams with light weight are fabricated from the FLG flakes by the use of Ni foams as self‐sacrifice templates. Furthermore, 3D graphene/Ni foams without any binders, which are used as supercapacitor electrodes in aqueous electrolyte, provide the specific capacitance of 113.2 F g?1 at a current density of 0.5 A g?1, retaining 90% capacitance after 1000 cycles.  相似文献   

8.
Mass graphene sheets were obtained by a re-expansion and exfoliation method which uses the commercially available graphite intercalation compounds as the starting materials. The as-prepared samples have been characterized by scanning electronic microscopy, transmission electron microscope, atomic force microscope, Fourier transform infrared spectrometer spectroscopies, and Raman microscope. Using high resolution transmission electron microscopy on 60 samples, it was shown that the final samples exhibit 8 % monolayer, 19 % bilayer, and 77 % less than or equal to five layers, and the sheets are largely free of defects and chemical functional groups after thermal reduction.  相似文献   

9.
We present a fabrication method producing large and flat graphene flakes that have a few layers down to a single layer based on substrate bonding of a thick sample of highly oriented pyrolytic graphite (HOPG), followed by its controlled exfoliation down to the few to single graphene atomic layers. As the graphite underlayer is intimately bonded to the substrate during the exfoliation process, the obtained graphene flakes are remarkably large and flat and present very few folds and pleats. The high occurrence of single-layered graphene sheets being tens of microns wide in lateral dimensions is assessed by complementary probes including spatially resolved micro-Raman spectroscopy, atomic force microscopy and electrostatic force microscopy. This versatile method opens the way for deposition of graphene on any substrates, including flexible ones.  相似文献   

10.
以鳞片石墨为原料,采用插层氧化法制得可膨胀氧化石墨,然后经高温热解获得膨胀石墨,再通过超声剥离得到石墨烯纳米片,采用FTIR、XRD、SEM、TEM和Raman对所得石墨烯纳米片的微观结构进行表征。结果表明,可膨胀氧化石墨在800℃高温热解30 s得到膨胀体积最大的膨胀石墨,由80目和100目鳞片石墨制得的膨胀石墨的最大体积分别为215 mL/g和85 mL/g,且在50℃条件下超声剥离5 h分别得到30~50层和6~20层的石墨烯纳米片。  相似文献   

11.
Graphene oxides (GOs) with large sheets and more perfect aromatic structure were prepared by a novel modified Hummers method. We demonstrated that the graphite did not need to be oxidized to such a deep degree as described in Hummers method because the space distance increased little when the oxidation proceeded to a certain extent and the obtained graphite oxides (GTOs) could be fully exfoliated to single layers with high thermal stability. The oxidation mechanism and chemical structure model of GO were proposed by analyzing the evolution of the functional groups with oxidation proceeded based on thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The layer spacing calculated by molecular dynamics simulations coincided with the X-ray diffraction results. Furthermore, the size distribution and thickness of GOs were also studied. The results confirmed that the GOs prepared by the modified method were fully exfoliated to uniform single layers, and this method may be important for efficient exfoliation of GTO to GO and large-scale production of graphene.  相似文献   

12.
We demonstrate a synthesis of graphene layers on graphene templates prepared by the mechanical exfoliation of graphite crystals using a developed chemical vapor deposition (CVD) apparatus that has a furnace with three temperature zones and can regulate the temperatures separately in each zone. This results in individual control over the decomposition reaction of the carbon feedstock and the growth of graphene layers by activated carbon species. CVD growth using multi-temperature zones provides wider temperature windows appropriate to grow graphene layers. We observed that graphene layers proceed by a layer-by-layer growth mode using an optical microscopy, an atomic force microscopy, and Raman spectroscopy. This result suggests that a graphene growth technique using the CVD apparatus is a potential approach for making graphene sheets with precise control of the layer numbers.  相似文献   

13.
An easy method of producing graphene sheets with high quality from mesocarbon microbeads (MCMBs) is demonstrated using oxidation, rapid expansion and ultrasonic treatment. Single layer graphene sheets have been successfully prepared from MCMBs through thermal exfoliation. The structure of the graphene sheets was investigated by scanning and transmission electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. MCMBs expanded mainly along the c-axis and formed worm-like ellipses from the original regular spherules. Exfoliation continued with the fragmentation of the pieces and produced delamination of the graphene sheets. MCMBs can be an excellent starting material for producing high quality graphene sheets with high yields, becoming an attractive raw material for industrial up-scale.  相似文献   

14.
The formation of binary graphite intercalation compounds (GICs) with nitric and sulfuric acids in the presence of a strong oxidant has been studied by x-ray diffraction and potentiometry in a wide range of acid concentrations. The redox potential of the oxidizing solution and the intercalation ability of the acid are shown to influence the stage number (the number of graphite layers between two successive intercalate layers) of the forming GIC and the concentration ranges of GIC formation. The (\(E_{H_2 } \))-H 0 (redox potential of the oxidizing solution-Hammett function of the acid) stability fields of graphite nitrate and graphite bisulfate are presented. Our results are the first to demonstrate that KMnO4 extends the concentration ranges of GIC formation and reduces the threshold acid concentration for the synthesis of binary GICs (to 40%).  相似文献   

15.
Monolayer and bilayer graphene sheets have been produced by a solvothermal-assisted exfoliation process in a highly polar organic solvent, acetonitrile, using expanded graphite (EG) as the starting material. It is proposed that the dipole-induced dipole interactions between graphene and acetonitrile facilitate the exfoliation and dispersion of graphene. The facile and effective solvothermal-assisted exfoliation process raises the low yield of graphene reported in previous syntheses to 10 wt%–12 wt%. By means of centrifugation at 2000 rpm for 90 min, monolayer and bilayer graphene were separated effectively without the need to add a stabilizer or modifier. Electron diffraction and Raman spectroscopy indicate that the resulting graphene sheets are high quality products without any significant structural defects.   相似文献   

16.
High specific surface area graphene nanosheets have been obtained from graphite oxide by using an effective modified exfoliation method under vacuum, the exfoliation temperature (135 degrees C) is much lower than that conventionally applied (1050 degrees C) to obtain monolayer graphene sheets via rapid thermal shock. These products have fluffy and highly porous structure and with a lateral size typically of a few micrometers. Transmission electron microscopy (TEM) observation shows that it looks like a wrinkled transparent ultrathin film consisting of single or few-layer graphene sheets, and their Brunauer-Emmett-Teller surface area is as large as 750 m2/g. Simultaneously, X-ray photoelectron spectroscopy analysis revealed that considerable amount of oxygen-containing groups (C/O ratio, 5:1) retained on the graphene sheets after exfoliation process, which would provide convenience for further modification of the surface properties and chemistry of graphene sheets. This work offers a facile and scalable approach to fabricate graphene oxide and opens up a new vista of various potential applications electronics and composite materials.  相似文献   

17.
Processable aqueous dispersions of graphene nanosheets   总被引:20,自引:0,他引:20  
Graphene sheets offer extraordinary electronic, thermal and mechanical properties and are expected to find a variety of applications. A prerequisite for exploiting most proposed applications for graphene is the availability of processable graphene sheets in large quantities. The direct dispersion of hydrophobic graphite or graphene sheets in water without the assistance of dispersing agents has generally been considered to be an insurmountable challenge. Here we report that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization. This discovery has enabled us to develop a facile approach to large-scale production of aqueous graphene dispersions without the need for polymeric or surfactant stabilizers. Our findings make it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.  相似文献   

18.
A new method for the preparation of graphene nanoplatelets (GNP) from graphite intercalation compounds (GICs) was investigated. Donor-type ternary GICs of natural graphites, lithium ions and tetrahydrofurane (NG-Li-THF) were synthesized via a solution process, with the lithium ions in the GICs then exchanged with different tetra alkyl ammonium cations to expand the interlayer distance (d-spacing) of these GICs. Microwave irradiation of these GICs resulted in the exfoliation of GICs, forming so-called 'worm-like exfoliated graphites.' Sonication of the worm-like exfoliated graphites in acetone resulted in GNPs with different aspect ratios. Powder X-ray diffractometry, scanning electron microscopy and transmission electron microscopy were employed to characterize the GICs and GNPs. It was found that the ion-exchange of NG-Li-THF increased the volume expansion ratios, and the molecular structure of the tetra alkyl ammonium cations affected the aspect ratios of the GNPs after exfoliation.  相似文献   

19.
Graphene has superior electrical conductivity than graphite and other allotropes of carbon because of its high surface area and chemical tolerance. Electrochemically processed graphene sheets were obtained through the reduction of graphene oxide from hydrazine hydrate. The prepared samples were heated to different temperatures such as 673 and 873 K. X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS), transmission electron microscopy (TEM), Raman spectra and conductivity measurements were made for as-prepared and heat-treated graphene samples. XRD pattern of graphene shows a sharp and intensive peak centred at a diffraction angle (2θ) of 26·350. FTIR spectra of as-prepared and heated graphene were used to confirm the oxidation of graphite. TEM results indicated that the defect density and number of layers of graphene sheets were varied with heating temperature. The hexagonal sheet morphology and purity of as-prepared and heat treated samples were confirmed by SEM–EDX and Raman spectroscopy. The conductivity measurements revealed that the conductivity of graphene was decreased with an increase in heating temperature. The present study explains that graphene with enhanced functional properties can be achieved from the as-prepared sample.  相似文献   

20.
Ultra-fast synthesis of graphene has been reported by microwave assisted graphene oxide reduction. In this article, the graphene oxide was initially dried above room temperature. The initial heat treatment of graphene oxide demonstrates a distinct improvement of exfoliation rate of graphene sheets. This method provides an efficient way for mass production of high quality graphene sheets. Raman spectroscopy, scanning electron microscopy, and X-ray diffraction techniques has been used to characterize reduced graphene sheets. The quality of reduced graphene was found to be affected by the initial drying temperature of graphite oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号