共查询到20条相似文献,搜索用时 15 毫秒
1.
Rutile TiO2 nanowires anchored on silica were fabricated by annealing TiO2 nanoparticles dispersed on silicon or quartz substrate by means of a polystyrene nanosphere monolayer template at 1000 degrees C for 1 h without any catalyst. The diameter and length of the nanowires were 30-80 nm and 1-3 microm, respectively. The growth direction of the nanowires is [112]. The photocatalytic activities of TiO2 nanoparticles and anchored nanowires were evaluated. TiO2 nanowires had higher photocatalytic activity for rhodamine B than TiO2 nanoparticles. 相似文献
2.
Li J Zhen D Sui G Zhang C Deng Q Jia L 《Journal of nanoscience and nanotechnology》2012,12(8):6265-6270
The nanocomposite of Cu-TiO2-SiO2 photocatalyst have been prepared by a sol-gel method, which is used for the degradation of Rhodamine B (RB) as a probe that is notorious organic compound present in dyes wastewater. Morphological and structural characteristics of the Cu-TiO2-SiO2 nanocomposite were studied with low temperature N2 adsorption (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis diffuse reflectance spectroscopy (DRS). The Fourier transformed infrared spectroscopy (FT-IR) analysis shows the enhanced chemical bonding of O-Ti and O-Ti-O after the composition of Cu and SiO2 species into TiO2. It is found that the Cu-TiO2-SiO2 nanocomposite exhibits much higher photocatalytic activity under both UV light and visible light irradiation as compared with that over commercial titania (Degussa P25) toward the dyes wastewater containing RB. The photodegradation rate of RB (5 mg/L) can reach above 95.0% under sunlight after 3 h. The addition of SiO2 not only inhibites the crystal growth and anatase-to-rutile transformation of TiO2 nanocatalyst, but also enhances the adsorption of organic compounds. Cu-doping extends the light response to the visible region. Synergetic effects between Cu-SiO2 and TiO2 have been investigated, which provides a good way and material in the degradation field of dyes wastewater. 相似文献
4.
Up to 4 wt% of ultrasonically-pretreated titania and zirconia particles (5m average size) were dispersed in Al-11.8 wt% Si-1 wt% Mg alloy castings. The technique employed to prepare the cast composites involved mechanically mixing pretreated oxide particles in aluminium alloy melts in the presence of magnesium, followed by casting the resulting mix in permanent moulds. Pretreatment of the oxide particles consisted of agitating the particles in acetone by ultrasonic vibrations to cause the disintegration of agglomerates and the removal of adsorbed water molecules from the particle surfaces. Infra-red (i.r.) spectroscopy of powders showed desorption of water molecules from oxide surfaces by ultrasonic pretreatment in acetone. Ultrasonic pretreatment of oxide particles before their incorporation into the melt and presence of magnesium in the melt were found to be necessary to disperse TiO2 and ZrO2 particles in molten Al. Microscopic studies of the composites indicated dispersed TiO2 and ZrO2 particles which exhibited a reaction zone at the periphery of the particles, and microprobe X-ray elemental analysis confirmed preferential segregation of magnesium at the particle-matrix interface. The composites exhibited an increase in hardness as a result of dispersions of titania and zirconia particles, while the tensile-strength values of composites were comparable with that of the base alloy. 相似文献
5.
Tian Y Fang M Xu W Li N Chen Y Zhang L 《Journal of nanoscience and nanotechnology》2011,11(9):7802-7806
In this paper, the nanostructured Bi2WO6 with different hierarchical morphologies was synthesized via a warmly hydrothermal route. The structure and morphology of the as-prepared Bi2WO6 products were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), UV-vis absorption spectroscopy (UV-Vis) and N2-sorption analysis. The photocatalytic efficiency of Bi2WO6 was investigated by photodegradation of rhodamine B (RhB) under visible-light irradiation. The present work demonstrated that Bi2WO6 with four different hierarchical structures was effective visible-light-driven photocatalytic functional material for environmental purification. Moreover, the nest-like Bi2WO6 exhibited superior photocatalytic effects on rhodamine B degradation compared with other three Bi2WO6 morphologies. The excellent catalytic effect of the nest-like Bi2WO6 was attributed to its unique structural property and large surface area. The relationship between morphology and photocatalytic performance was discussed in detail. The photocatalytic mechanism for the degradation of RhB was also investigated, which revealed the important role of morphology in improving the photocatalyitc activities of Bi2WO6. 相似文献
6.
The present study investigates the dependence of photocatalytic rate on molecular structure of the substrate that is degraded. The photocatalytic degradation of Azure (A and B) and Sudan (III and IV) dyes, having similar structure, but different functional groups, were investigated with two catalysts. The photocatalytic activity of solution combustion synthesized TiO(2) (CS TiO(2)) was compared with that of Degussa P-25 for degrading these dyes. The effect of solvents and mixed-solvent system on photodegradation of Sudan III was investigated. The photodegradation rate was found to be higher in solvents with higher polarity. The effect of pH and the presence of metal ions in the form of chloride and nitrate salt, on degradation rate of Azure A was also investigated. The metal ions significantly reduced the photocatalysis rates. A detailed Langmuir-Hinshelwood kinetic model has been developed to explain the effect of metal ions on degradation rate of the substrate. This model elucidates the contribution of holes and electrons towards degradation of the dye. 相似文献
7.
Mahalakshmi M Vishnu Priya S Arabindoo B Palanichamy M Murugesan V 《Journal of hazardous materials》2009,161(1):336-343
Photocatalytic activity of TiO2 and zeolites supported TiO2 were investigated using propoxur as a model pollutant. Hbeta, HY and H-ZSM-5 zeolites were examined as supports for TiO2. Hbeta was chosen as the TiO2 support based on the adsorption capacity of propoxur on these zeolites (Hbeta>HY=H-ZSM-5). TiO2/Hbeta photocatalysts with different wt.% were prepared and characterized by XRD, FT-IR and BET surface area. The progress of photocatalytic degradation of aqueous propoxur solution using TiO2 (Degussa P-25) and TiO2 supported on Hbeta zeolite was monitored using TOC analyzer, HPLC and UV-vis spectrophotometer. The degradation of propoxur was systematically studied by varying the experimental parameters in order to achieve maximum degradation efficiency. The initial rate of degradation with TiO2/Hbeta was higher than with bare TiO2. TOC results revealed that TiO2 requires 600min for complete mineralization of propoxur whereas TiO2/Hbeta requires only 480min. TiO2/Hbeta showed enhanced photodegradation due to its high adsorption capacity on which the pollutant molecules are pooled closely and hence degraded effectively. 相似文献
8.
TiO(2) nanoparticles compounded with different amounts of bismuth were prepared by a sol-gel method, and the effects of compounding bismuth on the phase transformation, photoinduced charge separation and photocatalytic activity for degrading rhodamine B solution were mainly investigated, along with enhancement mechanism of photocatalytic activity of TiO(2) nanoparticles by compounding bismuth species. It can be confirmed that, by means of X-ray diffraction (XRD), surface photovoltage spectroscopy (SPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), compounding bismuth can extend the optical response, and effectively inhibit the phase transformation process from anatase to rutile, consequently greatly improving the anatase crystallinity so as to promote the photoinduced charge separation. These factors are responsible for the increase in the photocatalytic activity of TiO(2) compounded with an appropriate amount of bismuth species. 相似文献
9.
Photocatalytic degradation of phenanthrene (PHE) over TiO(2) in aqueous solution containing nonionic surfactant micelles was investigated. All photocatalytic experiments were conducted using a 253.7 nm mercury monochromatic ultraviolet lamp in a photocatalytic reactor. The surfactant micelles could provide a nonaqueous "cage" to result in a higher degradation rate of PHE than in an aqueous solution, but the higher Triton X-100 concentration (more than 2 g/L) lowered the degradation ratio of PHE because the additional surfactant micelles hindered the movement of micelles containing PHE so as to reduce their adsorption onto titania. Pseudo-second-order kinetics was observed for the photocatalytic degradation of PHE. Alkaline solution environment was beneficial to the photocatalytic degradation of PHE. PHE degradation could mainly be attributed to the formation of hydroxyl radicals as evident from the comparison of degradation efficiencies when O(2), H(2)O(2) and tert-butyl alcohol (TBA) were applied as oxidants or hydroxyl radical scavenger. Based on the GC/MS analysis of the intermediates, the possible pathways of the photocatalytic degradation of PHE were proposed. 相似文献
10.
Photodegradation of rhodamine B under visible light by bimetal codoped TiO2 nanocrystals 总被引:2,自引:0,他引:2
In the search for efficient photocatalysts working under visible light, we have investigated the effect of metal ions (Bi/Co, Fe/Co) codoping on the photocatalytic activity of TiO(2) prepared by stearic acid gel method. UV-vis spectra revealed that doped Co enhanced the absorbency of TiO(2) under visible light, and Bi/Co codoped TiO(2) showed higher absorbance than Fe/Co codoped TiO(2). The photoreaction based on the prepared samples for photodegradation of 20mg/l rhodamine B solution was examined. The results showed that Fe(0.1%)/Co(0.4%) codoped TiO(2) had the highest photoactivity among all as-prepared samples under visible light, though less absorbency of visible light, indicating that the photoactivity not only benefits from absorbency but also relates to the cooperative effect of the two dopants. 相似文献
11.
为提高TiO_2的光催化活性,利用原位氧化聚合法制备聚2-氨基苯磺酸改性TiO_2(P2ABSA/TiO_2)纳米颗粒,通过TEM、EDS、XRD、UV-Vis DRS和Photocurrent Test进行表征,以亚甲基蓝为模拟污染物,优化纳米材料制备条件,考察初始pH值和P2ABSA/TiO_2浓度对光催化效果的影响,通过捕捉实验判定活性氧物种在光催化过程中的贡献。结果表明:P2ABSA/TiO_2纳米颗粒最优制备条件为P2ABSA、TiO_2和氧化剂的物质的量之比2∶1∶2、HCl浓度1.2mol/L;TiO_2表面存在一层P2ABSA膜,P2ABSA改性没有改变TiO_2的物相和晶粒尺寸;P2ABSA/TiO_2纳米颗粒对可见光的响应提高,光电流密度从18.3μA/cm2提高到28.7μA/cm2;溶液初始pH值由3.93升至11.36,亚甲基蓝脱色率由92.0%提高到99.0%,P2ABSA/TiO_2纳米颗粒浓度最佳值为1.5g/L;活性氧物种在光催化过程中的贡献大小顺序为·OHh+·O-2,P2ABSA对TiO_2的光敏化作用是P2ABSA/TiO_2纳米颗粒光催化活性得到提高的主要原因。 相似文献
12.
There are multiple contaminants in practical wastewater;and the photodegradation of mixed pollutants is a challenge in the field of photocatalysis.Herein,we design a mesoporous 2D/2D TiO2(B)-BiOBr hetero-junction photocatalyst for the photodegradation of mixed pollutants.Such a coupling structure results in an enhancement in the disconnection of photoexcited carriers,and the increase of absorption and reaction sites.The 2D/2D TiO2(B)-BiOBr demonstrates outstanding photocatalytic activity for photode-grading rhodamine B(RhB),methyl orange(MO),tetracycline hydrochloride(TCH),and bisphenol A(BPA)simultaneously under visible light,which is 4.7.1.4,23 and 16.4 times as high as that of original BiOBr,respectively.Our work represents a possible solution to devise promising and efficient photocatalysts for the treatment of practical wastewater in the near future. 相似文献
13.
14.
Oleksandr V. Tomchuk Vasyl Ryukhtin Oleksandr Ivankov Aleksandr Ya. Vul’ Aleksandr E. Aleksenskii Leonid A. Bulavin 《Fullerenes, Nanotubes and Carbon Nanostructures》2020,28(4):272-276
AbstractThe structure of detonation nanodiamond aqueous dispersions grafted by europium or gadolinium atoms was investigated by small-angle neutron scattering over a wide size scale from 1 to 3000?nm. Similar to the previous studies of nanodiamond suspensions, a strong association of the particle into developed aggregates was revealed. While the characteristic aggregate size depends on the modification of the dispersions and varies in a wide interval of 35–1500?nm, the fractal character of clusters of nanodiamond particles (packed in a specialized branched form with a fractal dimension of 2.4) remains unchanged independent of the cluster size. The effect of the aggregate size increase upon grafting is considered as a basis for the stability reduction mechanism at the microstructural level. 相似文献
15.
《Journal of Experimental Nanoscience》2013,8(6):842-851
Using liquid phase deposition method on cellulose substrate, TiO2 nanofibres were prepared with TiCl4 as a precursor. TiO2 nanofibres were obtained after heat treatment of the cellulose template. The remaining product was composed of micron-size TiO2 fibres with a nanofiber microstructure. It is shown that nanofibres are formed through the aggregation of TiO2 nanoparticles. X-ray diffraction analysis of the as-prepared solution indicates the formation of crystalline TiO2 anatase phase. EDX analysis was employed to measure the adsorbed mass of TiO2 on cellulose substrate. The effect of deposition time on the growth and morphology was investigated by scanning electron microscopy. Transmission electron microscopy studies demonstrate fine microstructures composed of 10–15?nm?nanoparticles. Surface area of the TiO2 fibres, measured by Brunauer, Emmett and Teller analysis, was about 104?m2?g?1. Photodegradation of Rhodamine B as a standard dye shows that the prepared samples have a high photocatalytic activity due to large surface area. 相似文献
16.
《Journal of Experimental Nanoscience》2013,8(2):115-125
A facile large scale synthesis of high surface area anatase TiO2 nano material has been carried out by using the solution combustion synthesis with very widely available urea as fuel. The as-obtained puffy powder of anatase TiO2 was characterised by X-ray diffraction (XRD), Brunauer–Emmett–Teller surface area analysis, ultraviolet–visible (UV–vis) spectroscopy and X-ray photoelectron spectroscopy (XPS) techniques in order to analyse the structural, optical and surface properties of the synthesised material. Diffuse UV–vis spectroscopic data show a red shift in absorption spectra which may be attributed to the possible energy levels added in between the band edges of TiO2 due to the C and N doping as confirmed by XPS. Photocatalytic activity of the catalyst was assessed by the photocatalytic degradation of methyl orange under visible light irradiation. The effect of an electron acceptor in order to maximise the electron trapping for further inhibiting exciton recombination and thereby enhancing the oxidation of dyes has also been studied by using peroxomono sulphate(PMS) as the electron acceptor. 相似文献
17.
K. Byrappa A. K. Subramani S. Ananda K. M. Lokanatha Rai R. Dinesh M. Yoshimura 《Bulletin of Materials Science》2006,29(5):433-438
The sunlight mediated photocatalytic degradation of rhodamine B (RB) dye was studied using hydrothermally prepared ZnO (T = 150°C andP ∼ 20–30 bars). Zinc chloride was used as the starting material along with sodium hydroxide as a solvent in the hydrothermal
synthesis of ZnO. Different durations were tried to obtain pure ZnO phase, which was later confirmed through powder X-ray
diffraction. The photocatalytic behaviour of the prepared ZnO was tested through the degradation of RB. The disappearance
of organic molecules follows first-order kinetics. The effect of various parameters such as initial dye concentration, catalyst
loading, pH of the medium, temperature of the dye solution, on the photo degradation of RB were investigated. The thermodynamic
parameters of the photodegradation of RB, like energy of activation, enthalpy of activation, entropy of activation and free
energy of activation revealed the efficiency of the process. An actual textile effluent containing RB as a major constituent
along with other dyes and dyeing auxiliaries was treated using hydrothermally synthesized ZnO and the reduction in the chemical
oxygen demand (COD) of the treated effluent revealed a complete destruction of the organic molecules along with colour removal. 相似文献
18.
The photocatalytic degradation of indigo carmine has been investigated in aqueous solutions using TiO2 coated non-woven fibres as photocatalyst. The experiments were carried out to investigate the factors influencing the photocatalytic degradation, such as the previous adsorption in the dark, initial concentration of dye solution, temperature, and pH. The experimental results show that adsorption is an important parameter controlling the apparent kinetic constant of the degradation. The photocatalytic degradation rate was favoured by a high concentration of solution in respect to Langmuir-Hinshelwood model. The degradation rate was pH and temperature dependent with a high degradation rate at high temperature. 相似文献
19.
Synthesis of silver nano particles and fabrication of aqueous Ag inks for inkjet printing 总被引:2,自引:0,他引:2
The main problem in preparing stable and printable inks containing nanoparticles for inkjet printing is to overcome the strong agglomeration of the particles in dispersion medium. In this study, the silver particles with diameter around 50 nm were produced by a simple wet chemistry method. Stable aqueous printable inks were formulated by using the combination of a triblock copolymer and high intensity focused ultrasound (HIFU). Various factors that affect the ink stability, such as, copolymer content and time of HIFU treatment, were investigated. The ink containing 5 wt% silver has a viscosity of about 2 mPa s and surface tension 30 mN m−1 at 25 °C, which meet inkjet printer requirements. Such inks have been successfully printed on Al2O3 ceramics and low-temperature co-fired ceramics (LTCC) and the printed films show low resistivity. 相似文献
20.
This study investigates the photocatalytic degradation of p-phenylenediamine (PPD) with titanium dioxide-coated magnetic poly(methyl methacrylate) (TiO2/mPMMA) microspheres. The TiO2/mPMMA microspheres are employed as novel photocatalysts with the advantages of high photocatalytic activity, magnetic separability, and good durability. The scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and transmission electron microscopy (TEM) images of the TiO2/mPMMA microspheres are used to characterize the morphology, element content, and distribution patterns of magnetite and TiO2 nanoparticles. The BET-specific surface area and saturation magnetization of the TiO2/mPMMA microspheres are observed as 2.21 m(2)/g and 4.81 emu/g, respectively. The photocatalytic degradation of PPD are performed under various experimental conditions to examine the effects of initial PPD concentration, TiO2/mPMMA microsphere dosage, and illumination condition on the eliminations of PPD and chemical oxygen demand (COD) concentrations. Good repeatability of photocatalytic performance with the use of the TiO2/mPMMA microspheres has been demonstrated in the multi-run experiments. The photocatalytic kinetics for the reductions of PPD and COD associated with the initial PPD concentration, UV radiation intensity, and TiO2/mPMMA microsphere dosage are proposed. The relationships between the reduction percentages of COD and PPD are clearly presented. 相似文献