首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
葛权  雷晓玲  曹益荣  荣东霞  文晓刚 《功能材料》2012,43(13):1745-1747,1751
采用两步法合成磷酸铁锂,第一步先以氯化铁、磷酸二氢铵和磷酸为原料,用水热法合成球状磷酸铁,并研究了温度、不同铁源对其形貌的影响;第二步将制得的磷酸铁与氢氧化锂、PEG-10000混合,在氮气气氛保护下,750℃高温烧制成磷酸铁锂。用X射线衍射(XRD)、扫描电子显微镜(SEM)等表征了磷酸铁及磷酸铁锂的纯度和形貌。制得的磷酸铁锂微球在0.1C充放电时,比容量达到143.5mAh/g。  相似文献   

2.
以锂∶铁∶磷摩尔比为1∶1∶1为原料,采用溶剂热法合成了纯的、晶型规则的亚微米级LiFe-PO4;再加入酚醛树脂经高温处理合成了LiFePO4/C复合正极材料,其振实密度高,加工性能好。利用X射线衍射(XRD)、扫描电子显微镜(SEM)及恒电流充放电技术研究了溶剂热温度、时间对产物组织结构及性能的影响。结果表明溶剂热温度为190℃、溶剂热时间为24h合成样品表现出良好的电化学综合性能,振实密度为1.25g/cm3;室温下0.1C倍率充放电,放电比容量达到151.3mAh/g;在1C倍率下放电时,材料放电比容量仍能保持在120.1mAh/g左右。  相似文献   

3.
LiFePO4/C正极材料的液相合成及电化学性能研究   总被引:3,自引:0,他引:3  
采用磷酸三丁酯(TBP)为多功能反应物并添加表面活性剂PEG-4000合成了LiFePO4/C正极材料,利用XRD、SEM、XPS和滴定分析对产品进行了结构、表面形貌和化学组成表征.结果表明在650℃烧结15h所得产物结晶良好,为均匀分布在100nm左右的类球形颗粒.循环伏安曲线显示,该样品具有对称且尖锐的氧化还原电位峰,表明材料具有良好的电化学可逆性.在0.1mA/cm2电流密度下,其首次充放电比容量分别为162和158mAh/g,经100次循环后放电容量损失率仅为3.3%,当充放电密度增加到4mA/cm2时,材料的放电比容量仍然接近100mAh/g,倍率性能优良.  相似文献   

4.
5.
《Materials Letters》2007,61(8-9):1667-1670
Bi2S3 nanorods were synthesized via a simple solvothermal process in polyol media through the reaction between Bi(NO3)3·5H2O, urea and CS2 at 150 °C for 15 h using diethylene glycol as solvent. The nanorods were characterized by XRD, TEM and SAED. The results showed that the products were well-crystallized orthorhombic phase with lattice parameters a = 11.15 Å, b = 11.3 Å and c = 3.984 Å, which are consistent with the value in standard JCPDS card No. 17-0320. DEG served as an excellent solvent and structure director. Besides, compared to water and EG as solvents, the DEG system can provide a mild and homogenous condition, which is favorable to anisotropic growth and increases the yield of high quality Bi2S3 nanorods. Based on the experimental results, the growth mechanism was discussed.  相似文献   

6.
刘飚  官建国  张清杰 《功能材料》2006,37(12):2001-2002,2006
以氯化亚铁为前驱物,1,2-丙二醇为还原剂,采用多元醇法意外获得Fe3O4纳米粒子.通过X射线衍射分析标定了获得样品的物相为面心立方结构的Fe3O4,用透射电镜观察了样品的形貌,颗粒形貌为球形,大小为50~70nm,反应机理的研究表明,Fe2 发生了歧化反应,反应主要向氧化的方向进行.用振动样品磁强计表征了样品的静磁性能,测得的饱和磁化强度为74.30A·m2/kg,矫顽力仅为102.68A/m,粒子具有超顺磁性.  相似文献   

7.
不同粒径球形LiFePO4的制备及其性能研究   总被引:1,自引:0,他引:1  
曹寅  王子港  杨晖 《功能材料》2011,42(3):448-451
利用控制结晶法制备了粒径约为1、5、10μm球形FePO4,以此为前驱体通过碳热还原法合成不同粒径的球形LiFePO4正极材料.采用XRD、SEM以及恒流充放电测试等手段对材料的结构、形貌和电化学性能进行表征,并比较了不同粒径产物的振实密度.合成的材料较好地保持了球形形貌,大粒径的样品振实密度高达2.03 g/cm3,...  相似文献   

8.
The superparamagnetic (SPM) cobalt nanoparticles with an average size of 2 nm have been prepared through a solvothermal process in the presence of triethanolamine. The synthesized nanoparticles are characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, and superconducting quantum interference device magnetometer. X-ray diffraction analysis confirms the face centered cubic phase of as-prepared cobalt nanoparticles. Transmission electron microscopy was employed to study the morphology of the as-prepared product, which exhibit spherical-like shape with size around 2 nm. The high resolution transmission electron microscopy image of cobalt nanoparticles shows the lattice spacing value of 0.204 nm. This is well matched with the (111) lattice spacing of fcc Co. XPS revealed the prepared product is pure cobalt. The blocking temperature of 17 K was obtained and confirmed by field-cooled and zero-field-cooled plots. The hysteresis loop revealed the synthesized nanoparticles have SPM character at room temperature.  相似文献   

9.
Kim D  Jeong S  Moon J 《Nanotechnology》2006,17(16):4019-4024
Spherical silver nanoparticles with various sizes and standard deviations were synthesized by the polyol process. Two different synthesis methods were compared in order to investigate the influence of reaction parameters on the resulting particle size and its distribution. In the precursor heating method, wherein a solution containing silver nitrate was heated to the reaction temperature, the ramping rate was determined to be a critical parameter affecting the particle size. In contrast, in the precursor injection method, in which a silver nitrate aqueous solution was injected into hot ethylene glycol, because of rapid nucleation, the injection rate and the reaction temperature were important factors in terms of reducing the particle size and attaining monodispersity. Silver nanoparticles with a size of 17 ± 2?nm were obtained at an injection rate of 2.5?ml?s(-1) and a reaction temperature of 100?°C.  相似文献   

10.
In this work, we report on the synthesis of hybrid Au–ZnO nanoparticles using a one-pot chemical method that makes use of 1,3-propanediol as a solvent, a reducing agent and a stabilizing layer. The produced nanoparticles consisted of Au cores decorated with ZnO nanoparticles. The structure and morphology of the nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX) and Raman spectroscopy. Optical extinction measurements, combined with numerical simulations, showed that the Au–ZnO nanoparticles exhibit a localized surface plasmon resonance (SPR) clearly red-shifted with respect to that of bare Au nanoparticles (AuNPs). This work contributes to the emergence of multi-functional nanomaterials with possible applications in surface plasmon resonance based biosensors, energy-conversion devices, and in water-splitting hydrogen production.  相似文献   

11.
Co3O4 nanoparticles and cobalt (fcc-Co) powders were successfully synthesized by solvothermal process from a single precursor. The reaction of Co(Ac)2 with sodium dodecylbenzenesulfonate (SDBS) shows evident-dependent temperature effect. At 180 °C, Co(Ac)2 reacts with SDBS to produce precursor CoCO3 plate structures, which are assembled by small nanoparticles. At the temperature of 250 °C, the precursor CoCO3 can be gradually decomposed to form Co3O4 nanoparticles with diameter of ca. 70 nm. While, at 250 °C, the reaction of Co(Ac)2 with SDBS also produce precursor CoCO3 nanoparticles/plates, but the CoCO3 nanoparticles/plates would only decompose to give metal Co. In this process, SDBS acts as not only a surfactant but also a reagent. Magnetic measurements reveal that the as-prepared Co3O4 nanoparticles exhibit weak ferromagnetic properties and Co powders show ferromagnetic properties. In addition, a possible formation mechanism was elaborately discussed.  相似文献   

12.
介绍了LiFePO4作为钴、镍等锂电池代替品的优势及缺点,并针对纯磷酸铁锂极低的电子导电率和锂离子扩散速率这一缺点的改进进行总结。改进的方法主要有3种,一是对高温固相法、微波法、溶胶凝胶等合成工艺改进;二是对LiFePO4包覆导电材料,合成LiFePO4与导电物质的复合物;三是掺杂改性,改善LiFePO4内部的导电性。最后介绍了国内外LiFePO4的发展现状,提出国内LiFePO4发展所要面对的问题。  相似文献   

13.
利用碳热还原法合成了Li1-xMgxFePO4/C(x=0.00、0.01、0.02、0.03、0.04、0.05、0.1)正极材料,通过XRD、SEM、BET、CV、EIS和恒流充放电实验研究了不同掺杂量对产物结构和电化学性能的影响。结果表明少量Mg的掺杂未影响到LiFePO4的晶体结构,但显著改善了其电化学性能。其中,Li0.98Mg0.02FePO4/C材料具有更好的电化学性能,0.1C倍率放电时,首次放电容量达到165.2mAh/g,且循环性能良好。另外,对合成材料的红外光谱进行了研究和指认。  相似文献   

14.
《Materials Letters》2006,60(17-18):2105-2109
Two synthesis routes for the production of LiFePO4 particles were investigated in water at subcritical and supercritical conditions. Micron and nano-sized particles of LiFePO4 were obtained via both routes, with nano-sized particles predominating when temperature was above the critical temperature of water. Our results suggest that synthesis in supercritical water is attractive for obtaining nanometer-sized crystalline particles of LiFePO4 with a low degree of agglomeration. Electrochemical tests showed that this material exhibited improved capacity compared with LiFePO4 prepared via other methods.  相似文献   

15.
CoPt nanoparticles with an average size of 3?nm and narrow distribution were synthesized by chemical reduction of Co(CH(3)COO)(2) and Pt(acac)(2) by polyethyleneglycol-200. The as-prepared nanoparticles have a disordered fcc structure which transformed after thermal treatment to an ordered fct structure, which results in coercivity up to 6?kOe at room temperature and 9?kOe at 5?K because of the high magnetocrystalline anisotropy of the tetragonal structure [Formula: see text].  相似文献   

16.
《Materials Letters》2007,61(4-5):1260-1264
Well-crystallized LiFePO4 was directly synthesized by the KCl molten salt (MS) method. According to this method, the pre-sintered intermediate was mixed with KCl, and then sintered at a certain temperature, which was determined by thermogravimetric analysis (TGA). The olivine structure and spherical morphology were confirmed by X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). The spherical products show a higher tap density, which will benefit the enhancement of volumetric energy density. The electrochemical behavior was studied by cyclic voltammetry and galvanostatic tests. The LiFePO4 product sintered at 755 °C for 3 h exhibits the best electrochemical performance. At a rate of 0.1 C, it can deliver an initial capacity of 130.3 mAh g 1, and a capacity of 137.2 mAh g 1 at the 40th cycle. At a high discharge rate of 5 C, it still exhibits a capacity of 92 mAh g 1.  相似文献   

17.
A low temperature synthesis method using a modified polyol process is employed to synthesize FePt nanoparticles even at 393 K. The composition could be controlled using the above process by varying the reaction conditions to obtain Fe50Pt50 nanoparticles at 473 K. The magnetic properties of the fcc-FePt nanoparticles indicate that they are not completely superparamagnetic in spite of the smaller particle size.  相似文献   

18.
邵晓萍  代波  马拥军 《功能材料》2011,42(1):178-181
以氯化铁(FeCl3·6H2O)和氯化亚铁(FeCl2·4H2O)为原料,氢氧化钠(NaOH)为沉淀剂,在无表面活性剂作用下共沉淀制备出了不同粒径的Fe3O4纳米颗粒.采用X射线衍射(XRD)、透射电子显微镜(TEM)和振动样品磁强计(VSM)对产物的晶体结构、形貌、粒径及磁性能进行了表征.实验结果表明,n(Fe2+)...  相似文献   

19.
LiFePO4/C composite nanofibers were synthesized by calcination of the [LiOH + Fe(NO3)3 + H3PO4]/PVP electrospun nanofibers. Polyvinyl pyrrolidone (PVP) was used as the electrospinning template and carbon source. During the calcination [LiOH + Fe(NO3)3 + H3PO4] were transformed to LiFePO4 and PVP was decomposed into carbon. The morphology and properties of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller (BET) specific surface area analysis, electrochemical impedance spectroscopy and galvanostatic charge–discharge measurements. The results indicate that the mean diameter of as-prepared LiFePO4/C composite nanofibers is 179.08 ± 29.66 nm and the BET specific surface area is 66.59 m2 g?1. The addition of carbon does not affect the structure of LiFePO4, but improves its electrochemical performances. At the current density of 0.2 C, the initial discharge capacity of LiFePO4/C electrode is 133.6 mAh g?1 and there is no obvious capacity fading after 100 cycles. The formation mechanism of the LiFePO4/C composite nanofibers was also proposed.  相似文献   

20.
In the present study, cupric oxide (CuO) nanoparticles were synthesized by electrochemical discharge process using strong base electrolytes. The experiments were carried out separately using NaOH and KOH electrolytes. The mass output rate and the crystal size were obtained with variation of the rotation speed of magnetic stirrer for both types of electrolytes. The mass output rate of CuO nanoparticles increased with the increase in the speed of rotation, and, after an optimum speed, it started decreasing. However, the size of the particles reduced with the increase of the rotation speed. The crystal plane of the obtained CuO nanoparticles was similar for both the electrolytes whereas the yield of nanoparticles was higher in KOH as compared with NaOH under the same experiment conditions. In this set of experiments, the maximum output rates obtained were 21.66 mg h?1 for NaOH and 24.66 mg h?1 for KOH at 200 rpm for a single discharge arrangement. The average crystal size of CuO particles obtained was in the range of 13–18 nm for KOH electrolyte and 15–20 nm for NaOH electrolyte. Scanning electron microscopy images revealed that flower-like and caddice clew-shaped CuO nanocrystalline particles were synthesized by the electrochemical discharge process. Fourier transform infrared spectrum showed that the CuO nanoparticles have a pure and monolithic phase. UV–vis–NIR spectroscopy was used to monitor oxidation course of Cu → CuO and the band gap energy was measured as 2 and 2.6 eV for CuO nanoparticle synthesized in NaOH and KOH solutions, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号