首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the synthesis and luminescence characterization of Samarium (Sm3+) doped lithium metasilicate (Li2SiO3) phosphor ceramic were investigated. It was presented and discussed the results obtained on the luminescence and other optical studies such as X-ray diffraction (XRD), optical absorption and luminescence properties of Li2SiO3:Sm3+ phosphor ceramic. The Li2SiO3 compound was shown a characteristic phase in XRD. The doping in the lithium compound was not having a significant effect on the basic crystal structure of the material. The maximum photoluminescence (PL) emission for Sm3+ doped Li2SiO3 was observed at 554, 583, 641, 725 nm and bore resemblance to the visible region of the spectrum. The glow curves of all synthesized materials have a complex peak structure after being irradiated with a 90Sr–90Y beta source. In addition, the peak between 400 and 600 nm was seen in the radioluminescence (RL) spectrum because of a wide peak thought to be caused by silicate.  相似文献   

2.
Eu3+-doped trigonal LaAlO3 and orthorhombic GdAlO3 phosphors have been successfully synthesized by sol–gel method. The crystallization processes of the phosphors have been characterized by X-ray diffraction (XRD) and thermogravimetry-differential scanning calorimetry (TG-DSC). The optical properties of these phosphors were investigated using the photoluminescence (PL) and photoluminescence excitation (PLE) spectra. The influences of the different structures and bonding of the hosts on the luminescence performance of Eu3+ ion-doped LaAlO3 and GdAlO3 were investigated in detail based on chemical bond theory. Under appropriate UV-radiation, the reddish orange light emitted from GdAlO3:Eu3+ was brighter than that from LaAlO3:Eu3+. Such a brightly luminescent phosphor could be considered as an ideal optical material for the development of new optical display systems.  相似文献   

3.
《Advanced Powder Technology》2020,31(7):2597-2604
A series of Dy3+ activated RbCaF3 phosphors was synthesized by the conventional high temperature solid state reaction technique under ambient atmosphere. The structural properties and morphology of synthesized compounds were analyzed by PXRD and FE-SEM, respectively. The chemical composition of synthesized phosphors was obtained by EDAX. The phosphor was excited at 386 nm and monitored at 484 and 574 nm, and the strongest peak was located at 484 nm (blue region). In addition, the point of RbCaF3:Dy3+ with calculated chromaticity coordinates in the CIE diagram was located in the yellow region. TL characteristics of the RbCaF3:Dy3+ phosphor was analyzed and the glow curve peak was emitted at 355 K. The symmetry factor, Balarin parameter, activation energy and frequency factor were calculated by Chen method from the TL glow curve, and the TL signal degradation was also analyzed.  相似文献   

4.
A serials of Zn2(BO3)(OH)0.75F0.25 (ZBF), Tb3+, Ce3+/4+ single-doped ZBF and Tb3+/Ce3+/4+ co-doped ZBF novel phosphors with belt-like morphology were obtained through hydrothermal reaction without any surfactant. The obtained samples were characterized by XRD, SEM, EDS, TEM, TGA, XPS, DR, PL, and DT. The TGA curve shows that the phosphor is thermal stability. XPS results show that Tb3+ is present in the Tb-doped phosphor, and the Ce3+/Ce4+ mixed valence is present in the Ce-doped phosphor. The PL results indicate that ZBF host material and ZBH:Ce3+/4+ can emit blue light, ZBF:Tb3+ can emit green light. Compared with the Tb3+ single doped phosphor, the Tb3+/Ce3+/4+ co-doped phosphors shown stronger emission and shorter decay time, which is attributed to the effective energy transfer from the Ce3+/4+ to Tb3+ ions.  相似文献   

5.
This paper reports the structural, photometric, spectral and trapping parameters of Eu3+-doped gadolinium oxysulphide nanophosphor. The X-ray diffraction (XRD) data show the presence of the hexagonal phase of Gd2O2S and a crystallite size in nanometre range. Different structural parameters were calculated from XRD data. The Fourier transform infrared (FTIR) spectrum also confirms the formation of a compound. Scanning electron microscope studies reveal the morphology and crystallite size of the prepared phosphor. The band gap of the phosphor was calculated from diffuse reflectance spectra using the Kubelka–Munk function at 4.76 eV. The phosphor was illuminated with ultraviolet light and shows the characteristic red luminescence corresponding to 5D07FJ transitions of Eu3+. The Judd–Ofelt intensity parameters and spectral parameters were estimated from the photoluminescence data. The nanophosphor was irradiated with γ-rays in the dose range 15–50 Gy for thermoluminescence (TL) studies and a shifting of the peak towards lower temperatures was observed with increasing γ-dose. Trapping parameters were calculated from TL data using various glow curve analysis methods.  相似文献   

6.
《Optical Materials》2005,27(2):293-299
The thermoluminescence (TL) characterization of undoped, as well as Ce3+ and Tb3+ doped Y3Al5O12 (YAG) nanocrystals, exposed to X- and β-radiation was performed. The samples were prepared by precipitation process and the crystalline structure was obtained after annealing at 1150 °C. The TL signal of the undoped samples indicates a high sensitivity to X- and β-ray irradiation. The introduction of the dopants ions induced changes in the TL glow curve structure and the kinetic properties modifying the radiative recombination efficiency. The TL results suggest that both undoped and doped YAG nanocrystalline phosphor present a good potential for X- and β-ray irradiation dosimeter applications.  相似文献   

7.
The tunable color emission and persistent luminescence lifetime in phosphor CaGa2S4: Eu2+, Ho3+ were achieved through the introduction of alkaline earth elements Mg, Sr and Ba, in which the Ca was partially replaced. The duration of the persistent luminescence of the material CaGa2S4: Eu2+, Ho3+ was remarkably shortened as Al was introduced, substituting for Ga. The luminescent properties were investigated via thermo-luminescence (TL) glow curves, phosphorescence spectra and decay time curves. These results show that vast changes in trap levels and charge density takes place with introduction of other alkaline earth elements or Al. Trap depths and the trap density were also evaluated by simple methodologies.  相似文献   

8.
Dy3+ ion-doped Y2O3 phosphors have been synthesized and characterized for structure and optical properties. Structural characterization reveals that the samples are well crystalline. The crystallinity and particle size increases as the sample is post annealed, while optical quenching entities are reduced due to which a significant enhancement in fluorescence is observed. The phosphor is efficiently excited by ultraviolet light and emits intense blue (486 nm), yellow (573 nm), red (666 nm), and near infrared (764 nm, 823 nm) light. The emission is also observed even if charge transfer band (CTB) is excited, via energy transfer from CTB to 4f levels of Dy3+ ion. The intensity of yellow transition band varies with a variation in concentration of Dy3+ ion as well as with excitation wavelength, while the intensity of other transitions remains unaffected. Thus a variation in yellow to blue color (Y/B) gives an opportunity for the development of color tunable phosphor.  相似文献   

9.
The blue-emitting YPO4 phosphors doped with Yb3+ were prepared by a simple hydrothermal method. All the products were characterized by XRD and TEM, which revealed that they were zircon structure with leaf-like morphology. According to the analysis of photoluminescence spectra, upon ultraviolet (275 nm) excitation, the Yb3+ doped YPO4 phosphor showed an intense blue emission composed of two main bands at 420 and 620 nm assigned to charge transfer state (CTS) → 2F5/2 and CTS → 2F7/2, respectively. Moreover, the optimum doping concentration of Yb3+ in YPO4 phosphor was 1%, which exhibited the maximum emission intensity. The possible physical mechanism of concentration quenching was discussed, and the critical transfer distance determined to be 23.889 Å. In particular, the color purity of the as-synthesized Yb3+ doped YPO4 phosphor was as high as 83%, which made it an excellent candidate for blue-emitting materials.  相似文献   

10.
The effect of 120 MeVAg9+ ion irradiation on the structural, optical and luminescence properties of NaSr1-xBO3:xDy3+ (x = 0.5–2.5 mol%) phosphor synthesized by the conventional solid state reaction route is reported. The samples were irradiated with Ag9+ swift heavy ions (SHIs) using fluences of 1 × 1012, 5 × 1012 and 1 × 1013 ions cm?2. The unirradiated as well as irradiated samples were characterized by powder X-ray diffraction (PXRD), diffuse reflectance (DR) and photoluminescence techniques. PXRD confirms no change in the phase after irradiation except that loss of crystallinity had been observed which may be due to the fragmentation caused by the SHI. A blue shift in the absorption band of the DR was observed, resulting in an increase in the band gap from 5.61 eV to 5.77 eV, after ion irradiation. An increase in photoluminescence intensity (excited at 385 nm) was observed with increased ion fluences. The ratio of the blue to yellow emission peaks (I483/I577) was calculated and found to be varying with ion fluences suggesting that the white light can be achieved by tailoring this yellow to blue ratio. The Commission Internationale de l’Eclairage coordinates were calculated and found to move toward the white region after irradiation.  相似文献   

11.
A novel Ca5MgSi3O12: Eu2+, Mn2+ phosphor has been prepared by a sol-gel method. X-ray diffractometer, spectrofluorometer were used to characterize structural and optical properties of the samples. The results indicate that Ca5MgSi3O12: Eu2+, Mn2+ phosphors show two emission bands excited by ultraviolet light. Blue (around 450 nm) and green (around 502 nm) emissions originate from Mn2+ and Eu2+, respectively. With appropriate tuning the concentration ratios of Eu2+ to Mn2+, Ca5MgSi3O12: Eu2+, Mn2+ phosphors exhibit different hues and relative color temperatures, which have potential to act as a single-phase phosphor for white-light emitting diode.  相似文献   

12.
Polycrystalline sample LiMg(1?x)PO4:xTb3+ (x = 0.001, 0.002, 0.005, 0.01, 0.02) phosphor was synthesized via modified solid state method (MSSM). The prepared sample was characterized through XRD pattern (X-ray diffraction) and SEM (scanning electron microscope). Additionally, photoluminescence (PL), optically stimulated luminescence (OSL), thermoluminescence (TL) and other dosimetric properties including dose linearity, reusability and fading were studied. In OSL mode, sensitivity of prepared phosphor was found to be 2.7 times that of LiMgPO4:Tb3+, B (BARC) phosphor and 4.3 times that of α-Al2O3:C (BARC) phosphor. The TL glow consists of overlapping peaks in temperature range of 50–400°C and first peak (P1) was observed at 150°C, second peak (P2) at 238°C, third peak (P3) at 291°C and fourth peak (P4) at 356°C. The TL sensitivity of second peak (P2) of LiMgPO4:Tb3+ phosphor was compared with α-Al2O3:C (BARC) phosphor and found to be 100 times that of the α-Al2O3:C (BARC) phosphor. The minimum detectable dose (MDD) was found to be 5.6 μGy. Moreover, photoionization cross-sections, linearity, reusability, fading and kinetic parameters were calculated. Also, photoluminescence spectra of LiMgPO4: Tb3+ shows characteristic green–yellow emission exciting at 224 nm UV source.  相似文献   

13.
The orthorhombic and monoclinic Gd2(MoO4)3:Dy3+ were successfully synthesized by a hydrothermal process with a subsequent annealing treatment at 800 °C for 4 h. The crystal phase of Gd2(MoO4)3:Dy3+ was controlled as a function of the pH value of the solution. The crystallization and microstructures of the samples were characterized by Powder X-ray diffraction (XRD) and scanning electron micrograph (SEM). Furthermore, the optical properties were investigated by the diffuse reflection, excitation and emission spectra. The mechanisms of different crystal phases affected on the luminescence properties of Gd2(MoO4)3:Dy3+ were discussed. The electric dipole–dipole interaction between Dy3+ ions was identified as the main mechanism for the concentration quenching of the two structures. Finally, the chromatic natures of all the samples were analyzed in detail. The results indicate that the orthorhombic phosphor Gd1.84(MoO4)3:Dy0.163+ can be considered as a suitable candidate for white light emitting diodes (W-LEDs).  相似文献   

14.
《Optical Materials》2008,30(12):1680-1684
A novel red emitting phosphor α-Gd2(MoO4)3:Eu3+ was developed for white light emitting diodes (LEDs). The phosphor was prepared by solid-state reaction. The effects of the flux content and the activator concentration on the crystal structure, morphology and luminescent properties were investigated by using XRD, SEM, and fluorescent spectra. These results showed that this phosphor can be effectively excited by ultraviolet (UV) (395 nm) and blue (465 nm) light, matching the output wavelengths of ultraviolet or blue LED chips. The α-Gd2 (MoO4)3 phosphor may be a better candidate for solid state lighting application.  相似文献   

15.
Crosslinked polydimethylsiloxane (PDMS) composite coatings containing luminescent micrometer-sized yellow Y3Al5O12:Ce3+ (YAG:Ce3+) particles were prepared by spraying for potential applications in solid-state lighting. Blue light was down converted by phosphor particles to produce white light, yet poor color properties of YAG:Ce3+ stemmed from a deficiency of red. When nitride-based red phosphor was simply blended into the system, the electrostatic interaction of negatively charged YAG:Ce3+ and positively charged red phosphor particles caused remarkable clustering and heterogeneity in particle dispersion. Consequently, the light is dominantly blue and shifted to cold white. In other case, phosphor particles were sprayed onto the diffused polycarbonate substrate in stacked layers. Coatings with >80% inorganic content by mass with a thickness of 60 μm were subjected to thermal crosslinking, which the presence of the phosphor particles obstructed, presumably due to the hindrance of large phosphor particles in the diffusion of PDMS precursors. The coating of YAG:Ce3+ first followed by red phosphor in stacked layers produced better light output and color properties than the coating obtained by spraying the mixture at once. Monte Carlo simulation validated the hypothesis.  相似文献   

16.
Present article report on structural and optical properties of Er3+/Yb3+ codoped CaWO4 phosphors. Structural properties are explored using XRD and Raman technologies. The upconversion emission has been investigated with 980 nm excitation. The upconversion emission intensity is dependent on the concentrations of Yb3+ ions and reaches a maximum at 7%. Logarithmic plots of power dependencies reveal that the green and red emissions originate from a two-photon upconversion process. Based on the photon energy and the emission spectra, the possible upconversion processes and emission mechanisms are discussed. Finally, the optical temperature sensing properties has been performed using the fluorescence intensity ratio technique based on green upconversion emissions. Its temperature sensitivity is found to be above 0.0025 K-1 in the whole temperature range of 300–540 K, revealing this phosphor to be a promising optical temperature sensing material.  相似文献   

17.
A novel green phosphor Tb3+ doped AlPO4 was synthesized by conventional solid-state reaction method. The phosphor showed prominent luminescence in green due to the 5D4-7F5 transition of Tb3+. Structural characterization of the luminescent material was carried out with X-ray powder diffraction (XRD) analysis. The XRD measurements indicated that there are no crystalline phases other than AlPO4. Luminescence properties were analyzed by measuring the excitation and photoluminescence spectra. Photoluminescence measurements indicated that the phosphor exhibited bright green emission at about 542 nm under UV excitation. It is shown that the 3 mol% of doping concentration of Tb3+ ions in AlPO4:Tb3+ phosphor is optimum. The measured chromaticity for the phosphors AlPO4:Tb3+ under UV excitation is (0.32, 0.53).  相似文献   

18.
A novel red emitting phosphor α-Gd2(MoO4)3:Eu3+ was developed for white light emitting diodes (LEDs). The phosphor was prepared by solid-state reaction. The effects of the flux content and the activator concentration on the crystal structure, morphology and luminescent properties were investigated by using XRD, SEM, and fluorescent spectra. These results showed that this phosphor can be effectively excited by ultraviolet (UV) (395 nm) and blue (465 nm) light, matching the output wavelengths of ultraviolet or blue LED chips. The α-Gd2 (MoO4)3 phosphor may be a better candidate for solid state lighting application.  相似文献   

19.
A novel phosphor BaY2Si3O10 (BYSO): Ce3+, Tb3+ was synthesized by the conventional solid-state reaction, which displays tunable color emission from blue to blue-green under ultraviolet excitation by adjusting the radio of Ce3+ and Tb3+ appropriately. Photoluminescence characteristics were carefully investigated. We demonstrate the existence of efficient energy transfer from Ce3+ to Tb3+ in BaY2Si3O10: Ce3+, Tb3+ phosphor. The energy transfer Ce3+ → Tb3+ was proved to be governed by dipole–quadrupole interaction.  相似文献   

20.
A novel green emitting phosphor, Tb3+-doped Ca2GeO4 was prepared for the first time by a solid-state reaction. The phosphor showed prominent luminescence in green due to the magnetic dipole transition of 5D4  7F5. Structural characterization of the luminescent material was carried out with X-ray powder diffraction (XRD) analysis and field emission scanning electron microscopy (FE-SEM). Luminescence properties were analyzed by measuring the excitation and photoluminescence spectra. Photoluminescence measurements indicated that the phosphor exhibited bright green emission at about 541 and 550 nm under UV excitation. In addition, Al3+ or Li+ co-doping enhances the green emission from Ca2GeO4:Tb3+ by about 18 and 4 times, respectively, under UV excitation. The excellent luminescence properties make it a possible candidate for flat panel display application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号