首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray diffraction studies indicated that cold worked (∼50%) Alloy 800 was austenitic and transmission electron microscopy revealed the presence of a small volume fraction of hexagonal ε-martensite along with deformation bands, high dislocation density and primary TiN particle with a few dislocations within it. The passivity of cold worked alloy was very stable in H2SO4 solution but unstable in HCl solution at room temperature. The exposure of cold worked alloy in 673 K steam (initial pH of water was 10.1) for a period of 264 h showed almost nil corrosion rate. Scanning electron microscopy revealed a number of small oxide particles on the surface exposed in steam indicating initiation of oxide formation. Energy dispersive X-ray analyses of the surface containing small oxide particles indicated that the surface composition was similar to bulk composition of the alloy. X-ray photoelectron spectroscopy revealed that the alloy surface exposed in steam contained mixed oxides of iron and chromium as well as elemental form of iron, nickel and chromium.  相似文献   

2.
Influences of nitrogen on the passivity of Fe-20Cr-(0, 1.1)N alloys were examined by in situ electrochemical techniques. Nitrogen was incorporated in the form of (Fe, Cr)-nitrides in the passive film, and Cr was enriched in the film of the alloy with nitrogen. Photocurrent analysis demonstrated that the structure of passive film formed on Fe-20Cr-1.1N alloy is Cr-substituted γ-Fe2O3 with (Fe, Cr)-nitrides. Mott-Schottky analysis revealed that the film formed on Fe-20Cr-1.1N contained higher Cr6+ and lower Cr3+ vacancy concentrations compared with that on Fe-20Cr alloy. All of these results were associated with the enhanced protectiveness of the film on Fe-20Cr-1.1N.  相似文献   

3.
Isothermal oxidation of Al65Cr27Fe8 and Al80Cr15Fe5 was studied in the 600–1080 °C range. Formation of transient alumina layers is obtained up to 900 °C. On Al65Cr27Fe8 transient to α-phase transformations occur when performing oxidation at 1000 °C, together with the possible appearance of (Al0.9Cr0.1)2O3. At 1080 °C, direct formation of α-alumina is obtained. On Al80Cr15Fe5, spallation of the oxide layer during the cooling stage is observed following oxidation at 800 and 900 °C, revealing thermal etching of the underneath alloy surface. At 1050 °C the α-Al2O3 scale is directly formed but plastic deformation and recrystallization of the underneath alloy into several intermetallic phases is observed.  相似文献   

4.
With an increase in dissolved hydrogen (DH) content from 0 to 5 cm3 STP H2/kg H2O the electrochemical behaviour of Alloy 600 in deaerated PWR primary water at 290 °C was investigated, using corrosion potential (Ecorr) monitoring, potentiodynamic polarization, cyclic voltammetry and electrochemical impedance spectroscopy (EIS). DH content controls the Ecorr of Alloy 600. Raising DH content directly promotes the cathodic process and reduces the passivity of Alloy 600 significantly. EIS results show that increasing DH content results in a thinner inner-layer oxide film and ions diffusion becomes easier. The mechanism of these DH effects is discussed.  相似文献   

5.
A Sm(Co0.68Fe0.22Cu0.08Zr0.02)7.5 alloy was arc-ion-plated with a thin Cr2O3 film. It completely prevented the external oxidation and sufficiently suppressed the internal oxidation of the alloy in air at 700 °C for 20 h, causing the alloy to form only a very shallow layer where the Sm oxidation occurred. The mechanism for the effect of the Cr2O3 film on the oxidation of the alloy was proposed based on phase characterization of the oxidized layer.  相似文献   

6.
This paper presents a study on the oxide growth on a AISI 304 chromia-forming alloy, in air at 800 °C. After the nitridation treatment was performed on the steel surface, a γN solid solution is detected. In this case, no nitride formation in the alloy surface could be observed. In situ X-ray diffraction has been used to follow the oxides evolution at testing temperature. At the beginning of the oxidation test, CrN is formed together with Fe2O3. Nevertheless, Cr2O3 quickly appears and leads to a protective oxide scale formation growing according to a parabolic rate law. During oxidation in situ X-ray diffraction also shows that Fe2O3 is transformed into FeCr2O4. Our results show that nitridation increases the high temperature oxidation resistance of 304 steels at 800 °C.  相似文献   

7.
The oxidation behavior of a martensitic stainless steel with or without glass coating was investigated at 600–800 °C. The glass coating provided effective protection for the stainless steel against high-temperature oxidation. However, it follows different protection mechanisms depending on oxidation temperature. At 800 °C, glass coating acts as a barrier for oxygen diffusion, and oxidation of the glass coated steel follows linear law. At 700 or 600 °C, glass coating induces the formation of a (Cr, Fe)2O3/glass composite interlayer, through which the diffusion of Cr3+ or Fe3+ is dramatically limited. Oxidation follows parabolic law.  相似文献   

8.
To clarify the corrosion control effect of Zn injection into hydrothermal environments, the oxide films on Alloy 690 in the deaerated borated and lithiated water have been investigated using potentiodynamic polarization curves, electrochemical impedance spectra at 300 °C and ex-situ X-ray photoelectron spectroscopy. With Zn injection in the solution, ZnCr2O4 and ZnFe2O4 were formed in the inner and outer layers of the oxide films on Alloy 690, respectively, through exchange reactions between Zn2+ and Fe2+/Ni2+. A simple model for oxide film structure change and the mechanism of corrosion inhibition by Zn injection is proposed and discussed.  相似文献   

9.
Trace levels of soluble zinc(II) ions (30 ppb) maintained in mildly alkaline, hydrogenated water at 260 °C were found to reduce the corrosion rate of Alloy 600 (UNS N06600) by about 40% relative to a non-zinc baseline test [S.E. Ziemniak, M. Hanson, Corros. Sci., in press, doi:10.1016/j.corsci.2005.01.006]. Characterizations of the corrosion oxide layer via SEM/TEM and grazing incidence X-ray diffraction confirmed the presence of a chromite-rich oxide phase and recrystallized nickel. The oxide crystals had an approximate surface density of 3500 μm−2 and an average size of 11 ± 5 nm. Application of X-ray photoelectron spectroscopy with argon ion milling, followed by target factor analyses, permitted speciated composition versus depth profiles to be obtained. Numerical integration of the profiles revealed that: (1) alloy oxidation occurred non-selectively and (2) zinc(II) ions were incorporated into the chromite-rich spinel: (Zn0.55Ni0.3Fe0.15)(Fe0.25Cr0.75)2O4. Spinel stoichiometry places the trivalent ion composition in the single phase oxide region, consistent with the absence of the usual outer, ferrite-rich solvus layer. By comparison with compositions of the chromite-rich spinel obtained in the non-zinc baseline test, it is hypothesized that zinc(II) ion incorporation was controlled by the equilibrium for
0.55Zn2+(aq)+(Ni0.7Fe0.3)(Fe0.3Cr0.7)2O4(s)?0.40Ni2+(aq)+0.15Fe2+(aq)+(Zn0.55Ni0.3Fe0.15)(Fe0.3Cr0.7)2O4(s)  相似文献   

10.
The corrosion behavior of mild steel has been investigated during the wet and dry cyclic transitions containing Cr3+ ion added as sulfate in order to gain a better understanding of the influence of Cr on the atmospheric corrosion of steels. The corrosion rate during drying is greatly suppressed by the existence of Cr3+ ion in the electrolyte covered with the surface. Lower corrosion rates are observed during drying even if the surface have been polarized to negative potentials below −200 mVSHE during the wet corrosion conditions in which the surface-covered electrolyte contains Cr3+ ion. This corrosion behavior is identical to the case of Cr-containing steel for the wet and dry cyclic transitions without the addition of Cr3+ ion. The composition of rust layer after the wet and dry cyclic transitions is composed of α-FeOOH, γ-FeOOH and Fe3−δO4 for both cases of non-Cr3+ and Cr3+-containing condition, and no significant difference in the mass fraction of the above rust substances between two conditions is observed by means of Mössbauer spectroscopy. The only difference in the rust layer is that the rust formed under the wet and dry cyclic transitions containing Cr3+ ion contains a certain amount of Cr near the steel/rust interface. Those results suggest that the role of Cr during the wet and dry cyclic transitions is the inhibition of the rust reduction and the formation of Fe2+-state intermediate by the existence of Cr in the rust layer. This can lead to the inhibition of the oxygen reduction during drying.  相似文献   

11.
Iron and Fe-Si alloys (1, 2, 3 and 5 wt.% Si) were reacted at 680 °C with a gas mixture of 68% CO, 26% H2 and 6% H2O (aC = 2.9, pO2 = 2 × 10−23 atm). Alloy reaction products consisted of internally precipitated SiO2, an external scale of Fe3C + SiO2 and surface coke deposits containing cementite and silica particles. Coking and metal dusting rates both increased with alloy silicon level. This is proposed to be related to an increase in graphite nucleation sites at Fe3C/SiO2 phase boundaries, and the volume expansion accompanying graphite precipitation.  相似文献   

12.
X. Zhang  W. Xu  D.W. Shoesmith  J.C. Wren   《Corrosion Science》2007,49(12):4553-4567
The nature of carbon steel surfaces in 0.01 M borate solutions (pH 10.6) have been characterized using a range of electrochemical techniques and ex situ analyses such as Raman and Auger spectroscopy. Their subsequent behaviour on exposure to 10−3 M H2O2-containing solutions has also been studied. The anodically oxidized carbon steel surfaces have been characterized according to three regions: (I) the potential range <−0.5 V (vs SCE), when the surface is active and covered by FeII/FeIII oxide/hydroxide; (II) the potential range −0.5 V to 0.0 V when the surface is passivated by an outer layer of FeIII oxide/hydroxide over the inner layer of FeII/FeIII oxide/hydroxide; and (III) potentials >0 V when further growth of the underlying layer appears to lead to minor film breakdown/restructuring. The addition of H2O2 to films grown in the passive region or above (II and III) leads initially to a degradation of the outer layer allowing increased growth of the inner layer. Subsequently, the outer passivating layer is repaired and passivity re-established. These changes appear to be confirmed by Raman spectroscopy.  相似文献   

13.
To quantify the extent of chromium depletion, electrochemical potentiokinetic reactivation tests were performed on solution-annealed (1393 K) and solution-annealed followed by ageing at 973 K for 4 h or 16 h samples of austenitic Alloy 690. The electrochemical studies indicated very high equilibrium chromium concentration at the chromium carbide/matrix interface for the aged samples. A new electrochemical test parameter that is the ratio of peak activation to maximum passive current density (defined by Ia/If) was considered to express the extent of chromium depletion. The alloy, in three different heat-treated conditions, revealed unstable passivity in deaerated 5% and 10% NaOH solutions at 295 K. A comparatively higher passive current density of the aged samples in deaerated caustic environments than the annealed one could be attributed to reactivity of Cr-carbides with the caustic. Microscopic studies indicated that the TiN inclusion/matrix interface may provide a preferred site for pit initiation in caustic environments, which could be attributed to large degree of misfit between TiN inclusion and austenite matrix.  相似文献   

14.
The choice of materials is of great concern in the construction of Gen IV supercritical water-cooled reactors (SCWRs), particularly the fuel cladding, due to the harsh environment of elevated temperatures and pressures. Material’s performance under simulated conditions must be evaluated to support proper material selection by designers. In this study, alloys 800H, 3003 and 304 were tested in SCW at 700 °C and 25 MPa for 1000 h. The results showed that only alloy 3033 experienced weight gain while weight loss was found for alloys 304 and 800H. Based on SEM/EDS and XRD analyses, spinel and Cr2O3, in addition to small amount of Fe2O3, formed on 800H surface, while predominant Cr2O3 and some spinel were present on alloy 3033. Alloy 304 showed no evidence of Cr2O3 on the surface, although some Cr-containing spinel and Fe2O3 were detected on the surface.  相似文献   

15.
The potentiodynamic polarization curves in 0.5 M NaCl solution before and after crystallization of Fe73.5Cu1Nb3Si15.5B7 alloy have been studied in relation to the microstructure and alloy composition. It was shown that the corrosion resistance of the alloy strongly depending on these two factors. The observed decrease in corrosion resistance of the alloy after the heat treatment up to 480 °C in comparison to the corrosion resistance of the alloy in the as prepared state is attributed to the increased inhomogeneity of the alloy that coincides with the first appearance of Fe3Si phase. Further heating (up to 600 °C) resulted in an increase in the number of Fe3Si nanocrystallites and the appearance of a FeCu4 phase. After annealing at 600 °C the lowest corrosion rate, 0.004 mm a−1, was observed. Annealing of the samples at higher temperatures (>600 °C) induced formation of six crystalline phases which proved detrimental to the corrosion resistance of the Fe73.5Cu1Nb3Si15.5B7 alloy. Solid corrosion products were identified on the surface of the samples after anodic polarization.  相似文献   

16.
The EIS technique was used to analyze the electrochemical reaction behavior of Alloy AZ91 in H3PO4/KOH buffered K2SO4 solution at pH 7. The corrosion resistance of Alloy AZ91 was directly related with the stability of Al2O3 · xH2O rich part of the composite oxide/hydroxide layer on the alloy surface. The break down of the oxide layer was estimated to occur mainly on the matrix solid solution phase in Alloy AZ91. The mf capacitive loop arose from the relaxation of mass transport in the solid oxide phase in the presence of Al2O3 · xH2O rich part and from Mg+ ion concentration within the broken area in the absence of Al2O3 · xH2O rich part in the composite oxide structure on the alloy surface. The lf inductive loop had tendency of disappear when the dissolution rate of the alloy decreased as a result of the formation of the protective oxide layer.  相似文献   

17.
Trace levels of soluble zinc(II) ions (30 ppb) maintained in mildly alkaline, hydrogenated water at 260 °C were found to lower the corrosion rate of austenitic stainless steel (UNS S30400) by about a factor of five, relative to a non-zinc baseline test [S.E. Ziemniak, M. Hanson, Corros. Sci. 44 (2002) 2209] after 10,000 h. Characterizations of the corrosion oxide layer via grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy in combination with argon ion milling and target factor analysis, revealed that miscibility gaps in two spinel binaries—Fe(Fe1−mCrm)2O4 and (Fe1−nZnn)Fe2O4—play a significant role in determining the composition and structure of the corrosion layer(s). Although compositions of the inner and outer corrosion oxide layers represent solvus phases in the Fe3O4-FeCr2O4 binary, zinc(II) ion incorporation into both phases leads to further phase separation in the outer (ferrite) layer. Recrystallization of the low zinc content ferrite solvus phase is seen to produce an extremely fine grain size (∼20 nm), which is comparable in size to grains in the inner layer and which is known to impart resistance to corrosion. Zinc(II) ion incorporation into the inner layer creates additional corrosion oxide film stabilization by further reducing the unit cell dimension via the substitution reaction
0.2Zn2+(aq)+Fe(Fe0.35Cr0.65)2O4(s)?0.2Fe2+(aq)+(Zn0.2Fe0.8)(Fe0.35Cr0.65)2O4(s)  相似文献   

18.
A Cr2AlC coating was deposited on a β-γ TiAl alloy. Isothermal oxidation tests at 700 °C and 800 °C, and thermocyclic oxidation at 800 °C were performed in air. The results indicated that serious oxidation occurred on the bare alloy. Thick non-protective oxide scales consisting of mixed TiO2 + α-Al2O3 layers formed on the alloy surface. The coated specimens exhibited much better oxidation behaviour by forming an Al-rich oxide scale on the coating surface during the initial stages of oxidation. This scale acts as diffusion barrier by effectively blocking the ingress of oxygen, and effectively protects the coated alloys from further oxidation.  相似文献   

19.
The role of aluminum and titanium on the oxidation process of a nickel-base superalloy containing 18.89%Cr, 2.13%Al, and 2.41%Ti was investigated in steam at 800°C. A Cr2O3-rich scale was formed on the alloy surface. Aluminum formed only internal oxides below the Cr2O3-rich scale. On the other hand, titanium formed not only internal oxides but also oxides in the scale and the granular particles of TiO2 outside the scale. Agglomeration of the TiO2 particles also occurred. The oxidation behavior of aluminum and titanium was discussed from thermodynamic and kinetics aspects.  相似文献   

20.
The corrosion resistance of Ti-5%Ta-2%Nb alloy and DOCTOR (double oxide coating on titanium for reconditioning) coated titanium by O5+ ion irradiation were compared and investigated for their corrosion behaviour. O5+ ion irradiations were carried out at a dose rate of 1 × 1017, 1 × 1018 and 1 × 1019 ions/m2 at 116 MeV. The surface properties and corrosion resistance were evaluated by using scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray (EDX), glancing-angle X-ray diffraction (GXRD) and electrochemical testing methods. The results of electrochemical investigations in 11.5 N HNO3 indicated that the open circuit potential (OCP) of DOCTOR coated titanium is nobler than Ti-5%Ta-2%Nb alloy. The potentiodynamic polarization study of Ti-5%Ta-2%Nb alloy and DOCTOR coated specimen indicated decrease in passive current density with increase in ion doses (1 × 1017 to 1 × 1019 ions/m2) indicating decrease in anodic dissolution. Nyquist arc behaviour in the electrochemical impedance study substantiated the enhancement in oxide layer stability by O5+ ion irradiation. AFM results revealed that the DOCTOR coated Ti surface was dense without gross voids, and the surface roughness decreased by O5+ ion irradiation, but increased after corrosion test. EDX and GXRD patterns of DOCTOR coated Ti sample indicated that the coating was mainly composed of rutile TiO2. Based on the above results, the O5+ ion irradiation effect on corrosion behavior of Ti-5%Ta-2%Nb alloy and DOCTOR coated titanium are discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号