首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naltriben (NTB) is a selective antagonist for the putative delta2-opioid receptor. We have determined the regional kinetics and pharmacological profile of [3H]naltriben in vivo in mouse brain. After i.v. administration to CD1 mice, [3H]naltriben uptake and retention were high in striatum, cortical regions and olfactory tubercles, and low in superior colliculi and cerebellum. Robust rank order correlation was found between [3H]naltriben uptake in discrete brain regions and prior delta-opioid receptor binding determinations in vitro and in vivo. [3H]Naltriben binding in vivo was saturable, and was blocked by the delta-opioid receptor antagonist naltrindole, but not by the mu-opioid receptor antagonist cyprodime or the K-opioid receptor agonist (trans)-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]ben zeneacetamide mesylate (U50,488H). (E)-7-Benzylidenenaltrexone (BNTX), a selective antagonist for the putative delta1-opioid receptor, was 9.6- to 12.9-fold less potent than naltriben as an inhibitor of [3H]naltriben binding. Thus, the sites labeled by [3H]naltriben in vivo may correspond to the delta2-opioid receptor subtype. Such assignment is not definitive, particularly considering the 4-fold higher brain uptake of naltriben as compared to (E)-7-benzylidenenaltrexone. Moreover, the regional distribution of [3H]naltriben in brains from CXB-7/BY (CXBK) mice, a strain that shows supraspinal delta1- but not delta2-opioid receptor agonist effects, was quite similar to that found for CD1 mice.  相似文献   

2.
Specific binding of [3H]imipramine and [3H]paroxetine was simultaneously examined in human brains (frontal cortex, temporal cortex, cingulate cortex, hypothalamus, hippocampus and amygdala) from 11 controls and 11 depressed suicide victims. A single saturable high affinity site was obtained for both radioligands. Age was not related to significant changes in [3H]imipramine and [3H]paroxetine binding parameters, which indicates the stability of the brain serotonergic system with increasing age. A major finding of the present study concerns the existence of a significant decrease in the maximum number (Bmax) of [3H]imipramine binding sites in hippocampus from depressed suicides as compared with the control group, without changes in the binding affinity (Kd). In contrast, when [3H]paroxetine was used as radioligand, no changes in either Bmax or Kd were detected in any of the brain regions studied. These findings suggest that [3H]imipramine may be a better marker than [3H]paroxetine when alterations in the presynaptic serotonergic uptake site are to be detected.  相似文献   

3.
We have previously reported that in rat brain membranes, [3H]rilmenidine, in addition to labelling alpha2-adrenoceptors and the I2B-subtype of imidazoline receptor binding site (I2B-RBS), may label an additional I-RBS population, distinct from previously classified I1-RBS and I2-RBS. In this study, using crude or fractionated rat brain membranes we examined the possible association of [3H]rilmenidine-labelled I-RBS with the A- and B-isoforms of monoamine oxidase (MAO) by studying the inhibition of [3H]rilmenidine binding by a number of MAO inhibitors; and comparing the maximal binding density (Bmax) and subcellular distribution of [3H]rilmenidine binding sites with that of MAO-A and MAO-B catalytic sites labelled by [3H]RO41-1049 and [3H]RO19-6327 and 12-RBS labelled by [3H]2-BFI. Inhibition of [3H]rilmenidine binding by all MAO inhibitors tested produced very shallow curves (slope 0.29-0.56). Clorgyline and moclobemide (selective MAO-A inhibitors) displayed moderate affinities (60-140 nM), while pargyline (non-selective MAO-inhibitor), RO41-1049 (selective MAO-A inhibitor) and RO19-6327 (selective MAO-B inhibitor) exhibited very low affinities (> 2 microM) for 50-75% of [3H]rilmenidine-labelled I-RBS in crude brain membranes and even lower affinity for the remaining binding. Under identical buffer conditions, the Bmax of [3H]rilmenidine-labelled I-RBS (1.45+/-0.14 pmol/mg protein) was considerably lower than those of MAO-A (13.10+/-0.15 pmol/mg) and MAO-B (10.35+/-0.50 pmol/mg) sites. These results suggest that [3H]rilmenidine does not interact directly with the active catalytic site of either MAO enzyme and could at best only associate with a subpopulation of MAO molecules. Binding studies on five fractions of rat cortex homogenates-nuclear (N), heavy (M) and light (L) mitochondrial, microsomal non-mitochondrial (P), and soluble cytosolic (S) fractions-revealed that 45% of total [3H]rilmenidine binding was present in the P fraction cf. 20 and 23% in the M and L fractions, in contrast to [3H]RO19-6327 and [3H]2-BFI which bound 11-13% in the P fraction and 36-38% and 35-44% in the M and L fractions, respectively. Binding of all ligands in the N fraction was 6-15% of total. These studies reveal that [3H]rilmenidine-labelled I-RBS, unlike the I2-RBS, are not predominantly associated with mitochondrial fractions containing the MAO enzymes (and cytochrome oxidase activity), but appear to be distributed in both the mitochondrial and plasma membrane fractions in rat cerebral cortex.  相似文献   

4.
The tritiated derivative of the potent 5-HT1A receptor agonist S-14506 ?1[2-(4-fluorobenzoylamino)ethyl]-4-(7-methoxynaphtyl)pipera zine? was tested for its capacity to selectively label the serotonin 5-HT1A receptors both in vitro in the rat and the mouse brain, and in vivo in the mouse. In vitro studies showed that the pharmacological profile and the distribution of [3H]S-14506 specific binding sites (Kd = 0.15 nM) in different brain regions matched perfectly those of the prototypical 5-HT1A receptor ligand [3H]8-OH-DPAT. However, in the three regions examined (hippocampus, septum, cerebral cortex), the density of [3H]S-14506 specific binding sites was significantly higher (+66-90%) than that found with [3H]8-OH-DPAT. Whereas the specific binding of [3H]8-OH-DPAT was markedly reduced by GTP and Gpp(NH)p and increased by Mn2+, that of [3H]S-14506 was essentially unaffected by these compounds. In addition, the alkylating agent N-ethylmaleimide was much less potent to inhibit the specific binding of [3H]S-14506 than that of [3H]8-OH-DPAT. Measurement of in vivo accumulation of tritium one hour after i.v. injection of [3H]S-14506 to mice revealed marked regional differences, with about 2.5 times more radioactivity in the hippocampus than in the cerebellum. Pretreatment with 5-HT1A receptor ligands prevented tritium accumulation in the hippocampus but not in the cerebellum. Autoradiograms from brain sections of injected mice confirmed the specific in vivo labeling of 5-HT1A receptors by [3H]S-14506, therefore suggesting further developments with derivatives of this molecule for positron emission tomography in vivo in man.  相似文献   

5.
We investigated age-related changes in excitatory amino acid transport sites and FK506 binding protein (FKBP) in 3-week-, and 6-, 12-, 18- and 24-month-old Fischer 344 rat brains using receptor autoradiography. Sodium-dependent D-[3H]aspartate and [3H]FK506 were used to label excitatory amino acid transport sites and immunophilin (FKBP), respectively. In immature rats (3-week-old), sodium-dependent D-[3H]aspartate binding was lower in the frontal cortex, parietal cortex, striatum, nucleus accumbens, whole hippocampus, thalamus and cerebellum as compared to adult animals (6-month-old), whereas [3H]FK506 binding was significantly lower in only the hippocampus, thalamus and cerebellum. 3[H]FK506 binding exhibited no significant change in the brain regions examined during aging. However, sodium-dependent D-[3H]aspartate binding showed a conspicuous reduction in the substantia nigra in 18-month-old rats. Thereafter, a significant reduction in sodium-dependent D-[3H]aspartate binding was found in the thalamus, substantia nigra and cerebellum in 24-month-old rats. Other regions also showed about 10-25% reduction in sodium-dependent D-[3H]aspartate binding. The results indicate that excitatory amino acid transport sites are more susceptible to aging process than immunophilin. Further, our findings demonstrate the conspicuous differences in the developmental pattern between excitatory amino acid transport sites and immunophilin in immature rat brain.  相似文献   

6.
SR 141716A belongs to a new class of compounds (diarylpyrazole) that inhibits brain cannabinoid receptors (CB1) in vitro and in vivo. The present study showed that [3H]-SR 141716A binds with high affinity (Kd=0.61 +/- 0.06 nM) to a homogenous population of binding sites (Bmax=0.72 +/- 0.05 pmol/mg of protein) in rate whole brain (minus cerebellum) synaptosomes. This specific binding was displaced by known cannabinoid receptor ligands with the following rank order of potency SR 141716A > CP 55,940 > WIN 55212-2 = delta9-THC > anandamide. Apart from anandamide, all these compounds were found to interact competitively with the binding sites labeled by [3H]-SR 141716A. On the other hand, agents lacking affinity for cannabinoid receptors were unable to displace [3H]-SR 141716A from its binding sites (IC50 > 10 microM). In addition, the binding of [3H]-SR 141716A was insensitive to guanyl nucleotides. Regional rat brain distribution of CB1 cannabinoid receptors detected by [3H]-SR 141716A saturation binding and autoradiographic studies, showed that this distribution was very similar to that found for [3H]-CP 55,940. In vivo, the [3H]-SR 141716A binding was displaced by SR 141716A with ED50 values of 0.39 +/- 0.07 and 1.43 +/- 0.29 mg/kg following intraperitoneal and oral administration, respectively. Finally, the [3H]-SR 141716A binding sites remained significantly occupied for at least 12 hr following oral administration of 3 mg/kg SR 141716A. Taken together, these results suggest that SR 141716A in its tritiated form is a useful research tool for labeling brain cannabinoid receptors (CB1) in vitro and in vivo.  相似文献   

7.
By using [11C]flumazenil-positron emission tomography ([11C]FMZ-PET), we have previously shown that reductions of central benzodiazepine receptors (cBZRs) are restricted to the hippocampus in mesial temporal lobe epilepsy (mTLE) caused by unilateral hippocampal sclerosis (HS). Receptor autoradiographic studies on resected hippocampal specimens from the same patients demonstrated loss of cBZRs that was over and above loss of neurons in the CA1 subregion. Here, we report the first direct comparison of in vivo cBZR binding with [11C]FMZ-PET and ex vivo binding using [3H]FMZ autoradiography. We applied a magnetic resonance imaging-based method for partial volume effect correction to the PET images of [11C]FMZ volume of distribution ([11C]FMZ Vd) obtained in 10 patients with refractory mTLE due to unilateral, histologically verified HS. Saturation autoradiography was performed on the hippocampal specimens obtained from the same patients, allowing calculation of receptor availability ([3H]FMZ Bmax). After correction for partial volume effect, [11C]FMZ Vd in the body of the epileptogenic hippocampus was reduced by a mean of 42.1% compared with normal controls. [3H]FMZ Bmax, determined autoradiographically from the same hippocampal tissue, was reduced by a mean of 42.7% compared with control hippocampi. Absolute in vivo and ex vivo measurements of cBZR binding for the body of the hippocampus were significantly correlated in each individual. Our study demonstrates that reduction of available cBZR on remaining neurons in HS can be reliably detected in vivo by using [11C]FMZ-PET after correction for partial volume effect.  相似文献   

8.
The distribution and relative densities of imidazoline-receptor binding sites (I-RBS) and monoamine oxidase (MAO)-A and -B enzyme(s) in rat and rabbit kidney were compared autoradiographically using fixed nanomolar concentrations of [3H]rilmenidine and [3H]2-(benzofuranyl)-2-imidazoline ([3H]2-BFI) to label I-RBS, and [3H]RO41-1049 and [3H]RO19-6327 to label MAO-A and -B isoenzymes, respectively. In rat kidney, high densities of I-RBS labelled by [3H]rilmenidine were observed in the cortex and outer stripe (120-280 fmol/mg tissue), in contrast to low I-RBS densities labelled by [3H]2-BFI (<4 fmol/mg). A relatively high density of [3H]RO41-1049 binding to MAO-A enzyme was present in all regions of the rat kidney (160-210 fmol/mg) compared with a low density of [3H]RO19-6327 binding to MAO-B (< 25 fmol/mg). Comparison of MAO-A and -B distributions with that of [3H]rilmenidine-labelled I-RBS strongly suggests a lack of association in rat kidney. Similarly, the extremely low densities of [3H]2-BFI-labelled I2-RBS in rat kidney contrasts with the density of MAO-A, but is consistent with the low density of MAO-B. Rabbit kidney cortex and outer stripe contained high relative densities of [3H]rilmenidine-labelled I-RBS (200-215 fmol/mg) and [3H]2-BFI-labelled I2-RBS (45-60 fmol/mg) with lower densities in the inner stripe and inner medulla (< or = 100 and 30 fmol/mg respectively). A high density of MAO-A binding was observed in the inner stripe (515 fmol/mg) with lower levels in the cortex and outer stripe (100-240 fmol/mg), while high densities of MAO-B binding were observed in the cortex and outer stripe (290-450 fmol/mg) with lower levels in the inner stripe (65 fmol/mg). The correlation between the localization of [3H]rilmenidine-labelled I-RBS and [3H]RO19-6327-labelled MAO-B in rabbit kidney (r = 0.87, P = 0.057) suggest that [3H]rilmenidine may label a binding site co-existent with MAO-B, but not MAO-A (n.s.), in this tissue, but rilmenidine did not inhibit [3H]RO41-1049 or [3H]RO19-6327 binding. The distribution of [3H]2-BFI-labelled I2-RBS overlapped the combined distributions of both MAO-A and -B isoenzymes, suggesting that [3H]2-BFI may label sites on both enzymes in the rabbit, but [3H]2-BFI binding only correlated with [3H]RO19-6327 (r = 0.84, P = 0.07), not [3H]RO41-1049 binding (n.s.). Moreover, 2-BFI only inhibited [3H]RO19-6327, not [3H]RO41-1049 binding. These data are consistent with reports that I2-RBS are located on MAO-B and allosterically influence the catalytic site. The relationship of [3H]rilmenidine- and [3H]2-BFI-labelled I-RBS and the identity of non-MAO-associated [3H]rilmenidine-labelled I-RBS requires further investigation.  相似文献   

9.
Previous research has suggested that rats tested at 28 to 30 days of age show a marked subsensitivity to the sedative effects of ethanol. In the present study, rats of different ages were tested for aerial righting following acute ethanol (3 g/kg) treatment. These results were compared with the effects of the atypical benzodiazepine zolpidem (3 and 5 mg/kg) and pentobarbital (10 and 15 mg/kg). Animals tested at 25, 28, or 35 days of age were significantly less impaired by ethanol than preweanling rats (age 20 days) or older rats (age 65 to 75 days), whereas animals tested at 25 or 28 days of age were less impaired by the higher dose of zolpidem. With pentobarbital, the most distinct age-related trend was greater impairment in 20-day-old rats. Because ethanol may be active at the same type I GABA(A) receptor site selectively labeled by [3H]zolpidem, levels of [3H]zolpidem binding were determined for rats of different ages. Although some brain regions showed progressive increases in binding of [3H]zolpidem across development, other regions demonstrated increased binding from day 12 or 17 to day 20, then a plateau of binding levels across days 20, 25, and 28, with further increases occurring by day 36 or day 60. This pattern was observed in the cingulate cortex, medial septal nucleus, globus pallidus, inferior colliculus, red nucleus, and cerebellum. Overall, the results indicate that the period of subsensitivity to the sedative effects of ethanol is coincident with a change in the developmental pattern of GABA(A) receptor sites targeted by [3H]zolpidem.  相似文献   

10.
Binding characteristics of alpha 2-adrenoceptors in rat cerebral cortical membranes were compared using the antagonist radioligands [3H]idazoxan, [3H]2-(2-methoxy-1,4-benzodioxan-2-yl)-2-imidazoline ([3H]RX821002), and the partial agonist radioligand [125I]2-[2,6-(dichloro-4-iodophenyl)imino]imidazoline ([125I]iodoclonidine). With [3H]RX821002 and alpha 2-adrenoceptor subtype-selective competitors, both alpha 2A/D- and alpha 2C-adrenoceptor subtypes were detected, suggesting rat cortical membranes contain approximately 90% alpha 2A/D-adrenoceptor subtype and 10% alpha 2C-adrenoceptor subtype. Only alpha 2A/D-adrenoceptors were detected with [3H]idazoxan and [125I]iodoclonidine. All three radioligands bound to a single high affinity site (Kd = 0.3-1.6 nM). However, the densities of sites labeled by [3H]idazoxan and [125I]iodoclonidine were 50% greater than the density labeled by [3H]RX821002, likely representing non-adrenoceptor binding sites. The density of [125I]iodoclonidine binding sites in glycylglycine buffer was similar to that labeled by [3H]RX821002. These results suggest that: (1) alpha 2A/D-adrenoceptors are the predominant subtype in rat cerebral cortex, (2) demonstrate that the small number of alpha 2C-adrenoceptors in this tissue can be detected using prazosin to displace [3H]RX821002 binding, and (3) non-adrenoceptor binding with [125I]iodoclonidine can be minimized with the use of glycylglycine buffer.  相似文献   

11.
BACKGROUND: Circannual variations occur in several serotonergic parameters, including platelet serotonin uptake and platelet [3H]imipramine binding. METHODS: Binding of [3H]lysergic acid diethylamide ([3H]LSD) to platelet serotonin (5-HT)2A receptors and binding of [3H]paroxetine to platelet serotonin uptake sites were studied longitudinally for 1 year in 12 healthy volunteers. RESULTS: For [3H]LSD, the number of binding sites (Bmax) showed no significant seasonal variation (two-way analysis of variance), although Bmax was significantly higher during the months October through February than during the months April through August (32.6 vs. 29.8 fmol/mg protein; p = .015). For [3H]paroxetine, Bmax showed a significant seasonal variation (p = .003) with maximum in August (1322 fmol/mg protein) and minimum in February (1168 fmol/mg protein). The affinity constant (Kd) showed a significant seasonal variation for [3H]LSD binding (p = .046), but not for [3H]paroxetine binding. The seasonal fluctuations in [3H]LSD binding and in paroxetine binding tended to be inversely correlated for Bmax (r = -.70; p = .08) and were significantly negatively correlated for Kd (r = -.88; p = .009). CONCLUSIONS: The present study demonstrates a seasonal effect on platelet serotonin uptake site binding and indicates a possible seasonal effect on 5-HT2A receptor binding. The results imply that circannual fluctuations should be taken into account when these platelet serotonin markers are studied.  相似文献   

12.
High-affinity binding sites of [3H]norharman (synonymous: [3H]beta-carboline) were characterized in microsomal membranes from rat liver utilizing various beta-carboline (BC) derivatives and substances binding to enzymes of the cytochrome P450 (CYP) superfamily (EC 1.14.14.1). Saturation experiments demonstrated that [3H]norharman binds with high-affinity (dissociation constant 20.86 nM; maximum binding 21.40 pmol/mg protein). Displacement experiments with the beta-carboline derivatives 6-methyl-BC and 6-hydroxy-BC revealed a better adaptation to the two-site model, indicating that [3H]norharman binds to at least two sites, with an affinity of the high-affinity site in the low nM range. Substances binding with relative preference to isozymes of the CYP superfamily displaced [3H]norharman with a lesser potency than unlabeled norharman. Imidazole, pyrazole, and 4-methylpyrazole, known as inducers of the ethanol-inducible CYP2E1, displaced [3H]norharman with relative high potency. Furthermore, binding experiments with microsomes from human lymphoblast-expressed rat CYP2E1 revealed a high-affinity binding site [inhibition constant (Ki) 13.21 nM] comparable to that of microsomal membranes for norharman. It was displaceable by ethanol (Ki 14.25 microM), indicating that norharman and ethanol bind to the same binding site on CYP2E1. In vivo experiments with rats which had ingested ethanol for two weeks revealed that norharman blood plasma levels were significantly elevated at the end of this period, supporting the notion of an interaction of norharman and ethanol metabolism. Since it has been demonstrated in the Ames test that norharman's comutagenic action is connected with microsomal membranes (containing CYP isozymes), the present findings suggest that the observed increase in the levels of norharman in alcoholics leads to further CYP enzyme induction and thereby contributes to the increased risk of carcinomas in these patients.  相似文献   

13.
Select brain neurons increase their firing rate when ambient glucose levels rise, possibly via a neuronal ATP-sensitive K+ (KATP) channel and its associated sulfonylurea receptor (SUR). We used receptor autoradiographic binding of 20 nM [3H]glyburide (in the presence or absence of Gpp(NH)p which blocks binding to low-affinity sites) to assess the in vivo and in vitro effects of altering glucose availability upon high- and low-affinity binding to brain SUR. Since the brain's ability to monitor and regulate glucose metabolism is critical to maintenance of energy balance, testing was done in chow-fed male Sprague-Dawley rats which had an underlying predisposition to develop either diet-induced obesity (DIO-prone) or to be diet-resistant (DR-prone) when subsequently fed a high-energy diet. Under control conditions, both in vivo and in vitro studies showed DIO-prone rats to have reduced levels of low-, but not high-affinity [3H]glyburide binding in most forebrain areas. As compared to equiosmolar infusions of mannitol, 60 min unilateral intracarotid glucose infusions at 4 mg/kg/min in awake rats reduced low-affinity [3H]glyburide binding in numerous hypothalamic and amygdalar areas of both DR- and DIO-prone rats with little effect on high-affinity binding. Only in the paraventricular nucleus of DR-prone rats was there a phenotype-specific downregulation of low-affinity binding. Brain sections from other rats were incubated with [3H]glyburide in the presence of 0, 5 or 10 mM glucose. The resultant in vitro effects of glucose were more variable and widespread than intracarotid infusions. Here, glucose often increased low-affinity [3H]glyburide binding, particularly in DR-prone rats at 5 mM. Again, there was little effect on high-affinity binding. Thus, glucose may affect the firing of glucose-responsive neurons by indirectly altering KATP channel function via its effects on low-affinity cell body SUR.  相似文献   

14.
Slide-binding and autoradiographic studies were performed on cryostat sections from brains of adult Sprague-Dawley rats and BALB C mice to describe the binding characteristics of the tetrapeptide [3H]TIPP, an antagonist with high specificity and affinity for the delta opioid receptors. Steady-state binding of [3H]TIPP to cryostat sections of brain paste was reached in 120-180 min of incubation. Specific [3H]TIPP binding resulted in maximal numbers of binding sites (Bmax) of 15.59 and 23.91 fmol/mg protein, and dissociation constants (Kd) of 0.46 and 0.85 nM for rat and mouse brain paste sections, respectively. TIPP displayed the highest affinity for delta opioid receptors in inhibiting specific [3H]TIPP binding, with IC50 values of 0.82 nM and 0.14 nM in rat and mouse brain sections, respectively. While DPDPE was also effective in displacing the specific binding of [3H]TIPP (IC50 = 3.18 +/- 0.53 nM and 0.63 +/- 0.42 nM in rat and mouse brain paste sections, respectively), other subclass-selective or nonopioid ligands were much less effective, or ineffective. Autoradiographic localization of [3H]TIPP binding revealed the characteristic distribution of delta opioid receptors in both species. In consequence of its antagonistic nature, and of its unnatural amino acid residue, which makes this ligand more resistant to biodegradation, [3H]TIPP is a superior ligand for evaluation of the binding characteristics and autoradiogaphic distribution of the delta opioid receptors.  相似文献   

15.
This study evaluated the hypotheses that in vivo lead (Pb) exposure would alter alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor binding and, based on known glutamate-dopamine interactions and Pb-induced changes in dopamine (DA) systems, that AMPA binding might be differentially influenced by DA agonist treatment under conditions of Pb exposure. Alterations in high-affinity ([3H]AMPA) versus total AMPA [6-[3H]cyano-7-nitroquinoxaline-2,3-dione ([3H]CNQX)] receptor binding were determined in medial frontal cortex, dorsal striatum, and nucleus accumbens of rats exposed to 0, 50, or 150 ppm of Pb acetate for 2 weeks or 8 months. Additional 8-month groups received chronic intermittent treatment with saline, the D1 agonist SKF82958, or the general DA agonist apomorphine. Two-week exposures increased AMPA receptor densities, whereas robust decreases occurred after 8 months of Pb; at the latter time point changes were more pronounced for high-affinity than total AMPA receptor binding, with high-affinity effects expressed preferentially in dorsal striatum and nucleus accumbens. DA agonist treatments almost fully reversed Pb-related declines in [3H]AMPA binding but either had no effect (apomorphine) or even further potentiated (SKF82958) the decreases in [3H]CNQX binding. One possible basis for the long-term (8-month) decrease in AMPA binding is a postsynaptic glutamatergic stimulation of non-NMDA receptors.  相似文献   

16.
Specific [3H]MK801 binding to rat brain NMDA receptors after the administration of the convulsant drug 3-mercaptopropionic acid (MP) and the adenosine analogue cyclopentyladenosine (CPA) was studied by means of a quantitative autoradiographic method. MP administration (150 mg/kg, i.p.) caused significant decreases in [3H]MK801 binding in several hippocampus subareas and layers, mainly in CA1 and CA3 at seizure (11-27%) and postseizure (8-16%) and in cerebral occipital cortex at seizure (18-22%). In nucleus accumbens, a rise was observed at postseizure (44%) and a tendency to increase at seizure (24%). CPA (2mg/kg, i.p.) decreased ligand binding in hippocampus (CAI, CA2, CA3) (17-22%) and in occipital cerebral cortex (18-24%). When CPA was administered 30 minutes before MP (which delayed seizure onset) and rats were sacrificed at seizure, decreases in [3H]MK801 binding in several layers of CA1 and CA3 of hippocampus (11-27%) and in CA1, CA2, CA3 (24-35%) after CPA+MP postseizure, and an increase in CA2 after CPA and CPA+MP postseizure (20-34%), were observed. A drop was found in the occipital subarea (18-24%) after CPA and in the frontal and occipital subarea after CPA+MP postseizure (24-34%) while no changes were observed in any treatment involving the other cerebral cortex regions, thalamic nuclei, caudate putamen and olfactory tubercle. These results show that [3H]MK801 binding changes according to drug treatment and the area being studied, thus indicating a different role in seizure activity.  相似文献   

17.
The aporphine alkaloids boldine and glaucine have been reported to show "neuroleptic-like" actions in mice, suggesting that they may act as dopamine antagonists. We have found that in vitro boldine displaces specific striatal [3H]-SCH 23390 binding with IC50 = 0.4 microM and [3H]-raclopride binding with IC50 = 0.5 microM, while the affinities of glaucine at the same sites are an order of magnitude lower. In vivo, however, 40 mg/kg boldine (i.p.) did not modify specific striatal [3H]-raclopride binding and only decreased [3H]-SCH 23390 binding by 25%. On the other hand, 40 mg/kg glaucine (i.p.) displaced both radioligands by about 50%. Behaviors (climbing, sniffing, grooming) elicited in mice by apomorphine (0.75 mg/kg s.c.) were not modified by boldine at doses up to 40 mg/kg (i.p.) but were almost completely abolished by 40 mg/kg glaucine (i.p.). In the apomorphine-induced (0.1 mg/kg s.c.) rat yawning and penile erection model, boldine and glaucine appeared to be similarly effective, inhibiting both behaviors by more than 50% at 40 mg/kg (i.p.). Boldine and glaucine, injected i.p. at doses up to 40 mg/kg, were poor modifiers of dopamine metabolism in mouse and rat striatum. These data suggest that boldine does not display effective central dopaminergic antagonist activities in vivo in spite of its good binding affinity at D1- and D2-like receptors, and that glaucine, although less effective in vitro, does appear to exhibit some antidopaminergic properties in vivo.  相似文献   

18.
Alteration of ligand binding to dopamine D2 receptors through activation of adenosine A2A receptors in rat striatal membranes has been studied by means of kinetic analysis. The binding of dopaminergic agonist [3H]quinpirole to rat striatal membranes was characterized by the constants Kd = 1.50+/-0.09 nM and Bmax = 115+/-2 fmol/mg of protein. The kinetic analyses revealed that the binding had at least two consecutive and kinetically distinguishable steps, the fast equilibrium of complex formation between receptor and agonist (KA = 5.9+/-1.7 nM), followed by a slow isomerization equilibrium (Ki = 0.06). Activation of adenosine A2A receptors by CGS 21680 caused enhancement of the rate [3H]quinpirole binding, altering mainly the formation of the receptor-ligand complexes (KA) as well as the isomerization rate of this complexes (ki), while the deisomerization rate (k[-i]) and the apparent dissociation rate remained unchanged.  相似文献   

19.
The anticonflict activity of the ergot alkaloid, dihydroergosine, a drug which binds to 5-hydroxytryptamine1 (5-HT1) receptors and to gamma-aminobutyric acidA (GABAA) receptor-associated Cl- ionophore, was studied in water-deprived rats. In vitro effects of this drug on [3H]muscimol and [3H]flunitrazepam binding to the crude synaptosomal pellet of the human frontal cortex post-mortem were also investigated. Dihydroergosine, given 2 h prior to testing, enhanced drinking under punished (0.8 mA) conditions, and diminished it under unpunished conditions. The mechanism of this effect was (-)-propranolol- and pindolol-insensitive and picrotoxin-sensitive. Flumazenil either failed to affect, or at a higher dose (10 mg/kg), counteracted the dihydroergosine-induced enhancement of punished drinking. This dose of flumazenil was itself anxiogenic. Dihydroergosine had mild sedative and analgesic properties. Low concentrations of dihydroergosine (10 nM to 100 microM) enhanced the binding of [3H]muscimol but not of [3H]flunitrazepam. The results suggest that dihydroergosine may possess anxiolytic properties presumably mediated by its specific action at the GABA/benzodiazepine/chloride channel complex.  相似文献   

20.
The effect of the GTP-analogue guanylyl 5'-imidodiphosphate (Gpp[NH]p) on [3H]forskolin binding was studied in rat brain using autoradiography. In the striatum, 100 microM Gpp[NH]p produced a 40% increase in binding, whereas a decrease of about 30% was observed with low Gpp[NH]p concentrations (0.1-1 microM). In the molecular layer of the cerebellum all concentrations of Gpp[NH]p decreased [3H]forskolin binding. The decrease in binding disappeared in both striatum and the molecular layer of cerebellum in sections pretreated with 100 microM N-ethylmaleimide (NEM) for 10 min. NEM pretreatment did not significantly affect the stimulation of [3H]forskolin binding by micromolar concentrations of Gpp[NH]p in the striatum, but reversed the decrease observed in the molecular layer of the cerebellum, to an increase. Based on these data we suggest that the effects of the GTP-analogue Gpp[NH]p on [3H]forskolin binding may involve both Gs and Gi, where a stimulation produces an increase and decrease in binding respectively. The regional effects of Gpp[NH]p may reflect differences in the responsiveness of adenylyl cyclase to Gs and Gi-mediated effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号