首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The toxicity characteristic leaching procedure (TCLP) and the synthetic precipitation leaching procedure (SPLP) were performed on commercially purchased samples of the waste-derived soil amendment marketed as Ironite. Ten samples of the 1-0-0 grade (the most widely available in Florida) were tested. Two samples of the 12-10-10 grade and three samples of the 6-2-1 grade (a liquid version) were tested as well. TCLP leachate concentrations from the 1-0-0 grade samples ranged from 5.0 to 8.0 mg L(-1) for lead and 2.2 to 4.8 mg L(-1) for arsenic. SPLP concentrations from the 1-0-0 samples ranged from 0.62 to 3.1 mg L(-1) for lead and 1.9 to 8.2 mg L(-1) for arsenic. All of the 1-0-0 grade samples exceeded the U.S. hazardous waste toxicity characteristic (TC) limit for lead (5 mg L(-1)), while five of the 10 SPLP samples exceeded the TC limit for arsenic (5 mg L(-1)). The greater arsenic leachability in the SPLP relative to the TCLP was determined to be a result of lower pH conditions in the SPLP. A composite sample of the 1-0-0 grade was found to leach much greater concentrations of both arsenic and lead using California's waste extraction test (WET). Lead leachate concentrations were much lower in the two 12-10-10 samples (0.03 mg L(-1) or less); arsenic concentrations in these leachates (both TCLP and SPLP) exceeded 5 mg L(-1). None of the 6-2-1 samples contained lead or arsenic above TC limits. An experiment performed on the 1-0-0 grade which examined leachability as a function of pH found that at pH values in the range of what is encountered in the human digestive system (pH 4.0 to 1.5) lead leached 2-36% of its initial content, and arsenic leached 1-6% of its initial content. A simple gastric acid leaching experiment found 83 and 37% of the lead and arsenic present to leach, respectively.  相似文献   

2.
The proper management of discarded electronic devices (E-waste) is an important issue for solid waste professionals because of the magnitude of the waste stream and because these devices often contain a variety of toxic metals (e.g., lead). While recycling of E-waste is developing, much of this waste stream is disposed in landfills. Leaching tests are frequently used to characterize the potential of a solid waste to leach when disposed in a landfill. In the United States, the Toxicity Characteristic Leaching Procedure (TCLP) is used to determine whether a solid waste is a hazardous waste by the toxicity characteristic. The TCLP is designed to simulate worse-case leaching in a landfill environment where the waste is co-disposed with municipal solid waste (MSW). While the TCLP is a required analysis from a regulatory perspective, the leachate concentrations measured may not accurately reflect the concentrations observed under typical landfill conditions. Another method that can be performed to assess the degree a pollutant might leach from a waste in a landfill is to use actual landfill leachate as the leaching solution. In this study, two lead-containing components found in electronic devices (printed wire boards from computers and cathode ray tubes from computers and televisions) were leached using the TCLP and leachates from 11 Florida landfills. California's Waste Extraction Test (WET) and the Synthetic Precipitation Leaching Procedure were also performed. The results indicated that the extractions using MSW landfill leachates resulted in lower lead concentrations than those by the TCLP. The pH of the leaching solution and the ability of the organic acids in the TCLP and WET to complex with the lead are factors that regulate the amount of lead leached.  相似文献   

3.
Size-reduced samples of southern yellow pine dimensional lumber, each treated with one of five different waterborne chemical preservatives, were leached using 18-h batch leaching tests. The wood preservatives included chromated copper arsenate (CCA), alkaline copper quaternary, copper boron azole, copper citrate, and copper dimethyldithiocarbamate. An unpreserved wood sample was tested as well. The batch leaching tests followed methodology prescribed in the U.S. Environmental Protection Agency toxicity characteristic leaching procedure (TCLP). The wood samples were first size-reduced and then leached using four different leaching solutions (synthetic landfill leachate, synthetic rainwater, deionized water, and synthetic seawater). CCA-treated wood leached greater concentrations of arsenic and copper relative to chromium, with copper leaching more with the TCLP and synthetic seawater. Copper leached at greater concentrations from the arsenic-free preservatives relative to CCA. Arsenic leached from CCA-treated wood at concentrations above the U.S. federal toxicity characteristic limit (5 mg/L). All of the arsenic-free alternatives displayed a greater degree of aquatic toxicity compared to CCA. Invertebrate and algal assays were more sensitive than Microtox. Examination of the relative leaching of the preservative compounds indicated that the arsenic-free preservatives were advantageous over CCA with respect to waste disposal and soil contamination issues but potentially posed a greater risk to aquatic ecosystems.  相似文献   

4.
Protocols for assessing the risks of discarded electronic products (e-waste) vary across jurisdictions, complicating the tasks of manufacturers and regulators. We compared the Federal Toxicity Characteristic Leaching Procedure (TCLP), California's Waste Extraction Test (WET), and the Total Threshold Limit Concentration (TTLC) on 34 phones to evaluate the consistency of hazardous waste classification. Our sample exceeded TCLP criteria only for lead (average 87.4 mg L(-1); range = 38.2-147.0 mg L(-1); regulatory limit = 5.0 mg L(-1), but failed TTLC for five metals: copper (average 203 g kg(-1); range = 186-224 g kg(-1); limit = 2.50 g kg(-1), nickel (9.25 g kg(-1); range = 6.34-11.20 g kg(-1); limit = 2.00 g kg(-1)), lead (10.14 g kg(-1); range = 8.2211.60 g kg(-1); limit = 1.00 g kg-1), antimony (1.02 g kg(-1); range = 0.86-1.29 g kg(-1); limit = 0.50 g kg(-1)), and zinc (11.01 g kg(-1); range = 8.82-12.80 g kg(-1); limit = 5.00 g kg(-1). Thresholds were not exceeded for WET. We detected several organic compounds, but at concentrations below standards. Brominated flame retardants were absent. These results improve existing environmental databases for e-waste and highlight the need to review regulatory testing for hazardous waste.  相似文献   

5.
To assess the chemical stability of sludges generated by neutralizing acid rock drainage (ARD) with alkaline reagents, synthetic ARD was treated with hydrated lime (batch and high-density sludge process), limestone, and two proprietary reagents (KB-1 and Bauxsol). The amorphous metal hydroxide sludge produced was leached using deionized water, U.S. EPA methods (toxicity characteristic leaching procedure, synthetic precipitation leaching procedure), and the new strong acid leach test (SALT), which leaches the sludge with a series of sulfuric acid extractant solutions; the pH decreases by approximately 1 pH unit with each test, until the final pH is approximately 2. Sludges precipitated by all reagents had very similar leachabilities except for KB-1 and Bauxsol, which released more aluminum. SALT showed that lowering the pH of the leaching solution mobilized more metals from the sludges. Iron, aluminum, copper, and zinc began to leach at pH 2.5-3, approximately 4.5, approximately 5.5, and 6-6.5, respectively. The leachability of ARD treatment sludges is determined by the final pH of the leachate. A higher neutralization potential (e.g., a greater content of unreacted neutralizing agent) makes sludges inherently more chemically stable. Thus, when ARD or any acidic metalliferous wastewater is treated, a choice must be made between efficient reagent use and resistance to acid attack.  相似文献   

6.
The Toxicity Characteristic Leaching Procedure (TCLP) is used by the United States Environmental Protection Agency to determine if wastes contain extractable components subject to hazardous waste regulations. This paper examines the limitations of the TCLP and the way it is used by studying a particular example. Waste casting sand from brass foundries to which iron metal has been added passes the TCLP test but when placed in a landfill for several years may start to leach lead, copper, and zinc. Results of TCLP tests of waste sand alone and with the additives iron metal, zinc metal, hydrous ferric oxide, and hematite are reported. Three processes were studied: reduction by metallic iron, sorption by hydrous ferric oxide, and precipitation of hydroxides. Lead, copper, and zinc behave differently with respect to these three processes, and their measurement allows some deductions as to what is occurring in a TCLP test or a landfill. Iron addition does not result in long-term stabilization of a waste placed in the ground. The chemistry of a laboratory extraction can be very different from the chemistry of a waste placed in the environment. Wastes that are treated to pass the TCLP test, but are not permanently stabilized, are a threat to the environment.  相似文献   

7.
This paper presents the leaching behavior of anions (SO4(2-) and CrO4(2-)) from refinery oily sludge and ash produced by incineration of oily sludge, stabilized/solidified (s/s) with two types of cement, 142.5 and 1142.5. Anion leaching was examined using a 5-step sequential toxicity characteristic leaching procedure (TCLP) test. A single TCLP extraction resulted in limited sulfate release (<50 mg/L) for s/s ash and significant sulfate release (<850 mg/L) for s/s oily sludge. Chromate release was <1 mg/L for s/s ash and nondetectable for s/s oily sludge. The sequential TCLP tests resulted in increased leaching for both sulfate and chromate. In general,the increase of liquid-to-solid ratio (TCLP leachant-to-waste ratio) resulted in increased leaching of sulfate from solidified samples compared to untreated oily sludge, ash and cement. In contrast, chromate leaching decreased by s/s process. A qualitatively similar leaching behavior for SO4(2-), even for radically different wastes such as oily sludge and ash, solidified with two different types of cement was observed.  相似文献   

8.
Lead is the element most likely to cause discarded electronic devices to be characterized as hazardous waste. To examine the fate of lead from discarded electronics in landfills, five columns were filled with synthetic municipal solid waste (MSW). A mix of electronic devices was added to three columns (6% by weight), while two columns served as controls. A sixth column contained waste excavated from an existing MSW landfill. Leachate quality was monitored for 440 days. In columns with the synthetic waste, leachate pH indicated that the simulated landfill environment was characteristic of the acid phase of waste decomposition; lead leachability should be greater in the acid phase of landfill degradation as compared to the methanogenic phase. Lead concentrations ranged from 7 to 66 microg/L in the columns containing electronic waste and ranged from < 2 to 54 microg/L in the control columns. Although the mean lead concentrations in the columns containing electronic devices were greater than those in the controls, the difference was not found to be statistically significant when comparing the data sets over the entire monitoring period. Lead results from the excavated waste column suggest that lead concentrations in all columns will decrease as the pH increases toward more neutral methanogenic conditions.  相似文献   

9.
Light-emitting diodes (LEDs) are advertised as environmentally friendly because they are energy efficient and mercury-free. This study aimed to determine if LEDs engender other forms of environmental and human health impacts, and to characterize variation across different LEDs based on color and intensity. The objectives are as follows: (i) to use standardized leachability tests to examine whether LEDs are to be categorized as hazardous waste under existing United States federal and California state regulations; and (ii) to use material life cycle impact and hazard assessment methods to evaluate resource depletion and toxicity potentials of LEDs based on their metallic constituents. According to federal standards, LEDs are not hazardous except for low-intensity red LEDs, which leached Pb at levels exceeding regulatory limits (186 mg/L; regulatory limit: 5). However, according to California regulations, excessive levels of copper (up to 3892 mg/kg; limit: 2500), Pb (up to 8103 mg/kg; limit: 1000), nickel (up to 4797 mg/kg; limit: 2000), or silver (up to 721 mg/kg; limit: 500) render all except low-intensity yellow LEDs hazardous. The environmental burden associated with resource depletion potentials derives primarily from gold and silver, whereas the burden from toxicity potentials is associated primarily with arsenic, copper, nickel, lead, iron, and silver. Establishing benchmark levels of these substances can help manufacturers implement design for environment through informed materials substitution, can motivate recyclers and waste management teams to recognize resource value and occupational hazards, and can inform policymakers who establish waste management policies for LEDs.  相似文献   

10.
Laboratory experiments and modeling studies were performed to investigate the redox transformations of arsenic and iron in water treatment sludge during aging, and to evaluate the impact of those transformations on the leachability of arsenic determined with the U.S. EPA toxicity characteristic leaching procedure (TCLP). When the backwash suspension samples collected from a California surface water treatment plant were aged in closed containers for a few weeks, soluble arsenic increased from less than 5 microg/L to as high as 700 microg/L and then decreased dramatically because of biotic reduction of arsenate [As(V)], ferric oxyhydroxide, and sulfate. The experimental results and the thermodynamic models showed that arsenic mobility can be divided into three redox zones: (a) an adsorption zone at pe > 0, which is characterized by strong adsorption of As(V) on ferric oxyhydroxide; (b) a mobilization (transition) zone at -4.0 < pe < 0, where arsenic is released because of reduction of ferric oxyhydroxide to ferrous iron and As(V) to arsenite [As(III)]; and (c) a reductive fixation zone at pe < -4.0, where arsenic is immobilized by pyrite and other reduced solid phases. The TCLP substantially underestimated the leachability of arsenic in the anoxic sludge collected from sludge ponds because of the oxidation of Fe(II) and As(III) by oxygen. The leaching test should be performed in zero-headspace vessels or under nitrogen to minimize the transformations of the redox-sensitive chemical species.  相似文献   

11.
For the past 60 yr, chromate-copper-arsenate (CCA) has been used to pressure-treat millions of cubic meters of wood in the United States for the construction of many outdoor structures. Leaching of arsenic from these structures is a possible health concern as there exists the potential for soil and groundwater contamination. While previous studies have focused on total arsenic concentrations leaching from CCA-treated wood, information pertaining to the speciation of arsenic leached is limited. Since arsenic toxicity is dependent upon speciation, the objective of this study was to identify and quantify arsenic species leaching from new and weathered CCA-treated wood and CCA-treated wood ash. Solvent-extraction experiments were carried out by subjecting the treated wood and the ash to solvents of varying pH values, solvents defined in the EPA's Synthetic Precipitation Leaching Procedure (SPLP) and Toxicity Characteristic Leaching Procedure (TCLP), rainwater, deionized water, and seawater. The generated leachates were analyzed for inorganic As(III) and As(V) and the organoarsenic species, monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA), using high-performance liquid chromatography followed by hydride generation and atomic fluorescence spectrometry (HPLC-HG-AFS). Only the inorganic species were detected in any of the wood leachates; no organoarsenic species were found. Inorganic As(V) was the major detectable species leaching from both new and weathered wood. The weathered wood leached relatively more overall arsenic and was attributed to increased inorganic As(III) leaching. The greater presence of As(III) in the weathered wood samples as compared to the new wood samples may be due to natural chemical and biological transformations during the weathering process. CCA-treated wood ash leached more arsenic than unburned wood using the SPLP and TCLP, and ash samples leached more inorganic As(III) than the unburned counterparts. Increased leaching was due to higher concentrations of arsenic within the ash and to the conversion of some As(V) to As(III) during combustion.  相似文献   

12.
The contents of genistein and its β-glucoside form, genistin, in 13 soybean varieties were determined. Soybean variety (Var-1) with high genistein and genistin contents (0.019 mg/g and 0.420 mg/g) was used to evaluate the 3 basic soy protein concentrate (SPC) production methods (acid, alcohol, and hot-water leach) for genistin and genistein retention on a total weight basis. The acid leach method gave the highest total genistin + genistein content (0.742 mg/g) compared to SPCs prepared with the hot-water leach method (0.671 mg/g), and the alcohol leach method (0.070 mg/g). The acid leach, hot-water leach and alcohol leach methods had 20.3%, 24.2%, and 91.2% losses of total genistin + genistein, respectively.  相似文献   

13.
New alternative wood preservatives contain higher levels of copper (Cu) which can promote aquatic toxicity in natural water systems. Earlier work focused on evaluating toxicity using laboratory generated leaching solutions. In this study, the impact on preservative leaching and aquatic toxicity from treated wood products was evaluated using natural surface waters including waters from two rivers, three lakes, two wetlands, and one seawater, in addition to synthetic moderate hard water and deionized water. Blocks of wood treated with Cu based alternatives such as alkaline copper quaternary (ACQ) and copper boron azole (CBA), along with chromated copper arsenate (CCA)-treated wood, were leached under quiescent conditions, and total Cu, labile Cu, and heavy metal toxicity were measured. Results show that ACQ- and CBA-treated wood leach approximately 10 and 20 times more total Cu relative to CCA-treated wood and that the presence of organic and inorganic ligands in natural waters lowered the labile fraction of Cu relative to that from laboratory generated leaching solutions. Aquatic toxicity was found to correlate with the labile Cu fraction, and hence, the aquatic toxicity of the treated wood leachates was lower in natural waters in comparison to laboratory leaching solutions. The results of the present study suggest that studies designed to evaluate the impacts of treated wood should therefore consider the role of complexation in reducing the labile Cu fraction and its potential role in decreasing toxicity.  相似文献   

14.
建立并使用了高效液相色谱法(HPLC)与气相色谱-质谱联用法(GC-MS)两种白酒样品中EC的检测方法,两种方法定量分析的线性关系良好,相关系数在0.997以上。其中HPLC法检出限为4.0μg/L,回收率在84.9%~105.1%之间,RSD<6.84%;GC-MS法检出限为1.3μg/L,GC-MS检测回收率在95.3%~104.7%之间,RSD<4.26%。结果显示,两种方法的准确性和重复性均符合实验要求。其中HPLC法具有前处理操作方便,且试剂毒性相对较低的优点,但GC-MS方法的精确性和稳定性则比HPLC法更高,且检出限更低、总体处理及进样时间更短,单位时间内能更快、更精确地对酒样中氨基甲酸乙酯进行检测。结合产业实际发展情况,白酒的氨基甲酸乙酯检测量日益增多,检测限要求更低,故使用GC-MS法检测白酒中的氨基甲酸乙酯更能满足今后的检测工作需求。  相似文献   

15.
牛肝菌胞外多糖发酵培养基的优化   总被引:3,自引:4,他引:3  
在Plackett Burman设计实验结果基础上 ,采用响应曲面法对影响牛肝菌 (Boletussp .)ACCC 5 0 3 2 8发酵胞外多糖的培养基 5个关键组成成分酵母膏 (X1)、麦芽糖 (X2 )、(NH4 ) 2 SO4(X3)、FeSO4 (X4 )和CuSO4 ·5H2 O(X5)的最佳水平范围进行了研究和探讨。通过对二次多项回归方程求解得知 ,在上述自变量取值分别为 :酵母膏 1 4 .2 g/L ,麦芽糖 2 2 .2g/L ,(NH4 ) 2 SO4 2 .7g/L ,FeSO4 66.9mg/L ,CuSO4 1 0 1 .5 9μg/L时 ,胞外多糖最大预测值为 75 2 .0 79μg/mL(发酵醪 ) ,此预测可信度不仅被统计分析所验证 ,也被实践所证实  相似文献   

16.
In the radioactive waste management, metal chloride wastes from a pyrochemical process is one of problematic wastes not directly applicable to a conventional solidification process. Different from a use of minerals or a specific phosphate glass for immobilizing radioactive waste salts, our research group applied an inorganic composite, SAP (SiO(2)-Al(2)O(3)-P(2)O(5)), to stabilize them by dechlorination. From this method, a unique wasteform composing of phosphate and silicate could be fabricated. This study described the characteristic of the wasteform on the morphology, chemical durability, and some physical properties. The wasteform has a unique "domain-matrix" structure which would be attributed to the incompatibility between silicate and phosphate glass. At higher amounts of chemical binder, "P-rich phase encapsulated by Si-rich phase" was a dominant morphology, but it was changed to be Si-rich phase encapsulated by P-rich phase at a lower amount of binder. The domain and subdomain size in the wasteform was about 0.5-2 μm and hundreds of nm, respectively. The chemical durability of wasteform was confirmed by various leaching test methods (PCT-A, ISO dynamic leaching test, and MCC-1). From the leaching tests, it was found that the P-rich phase had ten times lower leach-resistance than the Si-rich phase. The leach rates of Cs and Sr in the wasteform were about 10(-3)g/m(2)· day, and the leached fractions of them were about 0.04% and 0.06% at 357 days, respectively. Using this method, we could stabilize and solidify the waste salt to form a monolithic wasteform with good leach-resistance. Also, the decrease of waste volume by the dechlorination approach would be beneficial in the final disposal cost, compared with the present immobilization methods for waste salt.  相似文献   

17.
为明确热解温度对不同烟草废弃物生物炭中元素组成及重金属安全性的影响,以烟秆、烟梗及废弃烟叶为原材料,研究了2种热解温度(450℃和600℃)下制备生物炭的产率、元素组成、重金属(Cr、Ni、Cu、Zn、As、Cd和Pb)含量及其浸出毒性特征。结果表明,当热解温度从450℃升至600℃,各废弃物生物炭的产率降低,生物炭中的碳(C)含量升高,而氮(N)和氧(O)含量降低;其中烟梗炭的产率最高,烟秆炭的碳含量及烟叶炭的氮含量最高。随热解温度升高,各生物炭中Ni、Cu、Zn、As和Pb等重金属含量均呈不同程度升高,而烟叶炭中Cr及烟梗和烟叶炭中Cd含量在600℃热解温度下显著低于原材料中含量;随热解温度升高,烟梗炭的Cr、As元素和烟叶炭的Zn、As元素的相对富集系数(REF)下降,且由富集趋势(REF>1)转为挥发趋势(REF<1);烟叶炭的Ni、Cu元素则由挥发趋势转为富集趋势。各生物炭中重金属的沥滤浸出毒性(TCLP)均低于其原材料浸出液,生物炭浸出液中Cu、Cd和Pb含量随热解温度升高而降低,As含量呈相反趋势,各生物炭浸出液重金属含量均低于GB 5085.3-2007浸出毒性规定限量值,表明烟草废弃物生物炭的重金属浸出毒性较低,可以在农田中安全施用。  相似文献   

18.
为更好地吸附水中的Cr(VI)和Pb(II)等重金属离子,并且避免吸附材料对水体的二次污染,利用对甲基苯磺酰胺为功能化试剂,通过水热法对聚丙烯腈(PAN)纳米纤维膜进行化学改性,得到了具有吸附重金属离子功能的磺胺化PAN纳米纤维膜,并研究了该纤维膜对Cr(VI)和Pb(II)的吸附去除性能和机制。结果表明:当水热温度为125 ℃,水热时间为2.5 h时,可得到形貌良好的磺胺化PAN纳米纤维膜;磺胺化PAN纳米纤维膜对Cr(VI)的吸附符合Langmuir模型,且满足二级动力学方程,在质量浓度为50 mg/L的K2Cr2O7溶液中1 h后可达到吸附平衡,吸附量为220.4 mg/g;对Pb(II)的吸附符合Freundlich吸附模型,且满足二级动力学方程,在质量浓度为50 mg/L的Pb(NO3)2溶液中1 h后可达到吸附平衡,吸附量为185.6 mg/g。  相似文献   

19.
殷忠  蒋励 《中国酿造》2020,39(11):169
建立了一种快速、高效的QuEChERS-高效液相色谱-质谱联用法(QuEChERS-HPLC-MS/MS)测定谷类杂粮制品中脱氧雪腐镰刀菌烯醇(DON)、3-乙酰脱氧雪腐镰刀菌烯醇(3-ADON)、15-乙酰脱氧雪腐镰刀菌烯醇(15-ADON)和玉米赤霉烯酮(ZON)共4种真菌毒素。样品前处理采用乙腈-水溶剂提取,经Florisil+C18+无水硫酸镁净化后检测。以0.10%甲酸-乙腈作为流动相,在质谱检测器的多反应监测模式下进行分析。结果表明,4种真菌毒素在各自的线性范围内线性关系良好,相关系数R2均大于0.999,回收率在85.1%~102.0%,相对标准偏差(RSD)为2.11%~6.22%。该方法具有前处理简单、净化效果好、灵敏度高和检测速度快的优点,适用于谷类杂粮制品中DON、3-ADON、15-ADON 和ZON的分析和定量检测。  相似文献   

20.
Vitrification of chromium electroplating sludge   总被引:1,自引:0,他引:1  
This work investigated the vitrification of hazardous electroplating sludge containing 140 mg/g Cr with/without bottom ash or cullet conditioning to lower specimens' basicities to 0.97-1.17 or 0.18-0.23, respectively. The conditioning was found to enhance the smooth/glassy appearance of slags but no ingot was obtained. Cr was >98% retained in the vitrified slags. Cr2O3 dominated in crystalline structure for the slag vitrified from the sludge, but this domination gradually shifted to Fe2SiO4/Fe3O4/SiO2 or SiO2 crystalline with increasing addition of bottom ash or cullet into the sludge, respectively. Compared to the raw sludge, the sludge-vitrified slag displayed lower leaching concentrations for most metals (particularly Cr (2.54 mg/L)), and smaller leaching ratios for Ag, Cr, and Cu (1.35, 0.02, and <0.01%, respectively) but greater ones for Cd, Pb, and Zn (3.83, 2.46, and 0.36%, respectively). The Cr leaching ratios were approximately 0.01% for the slags vitrified from the conditioned sludge. Independent of the slag basicity and crystalline structure, metal leaching quantity increased but leaching ratio decreased with increasing slag metal content. The slag compressive strengths were improved to >14.7 MPa at the mixing ratios > or = 2/1 and 1/1 for bottom ash/sludge and cullet/sludge, respectively. Fulfilling the criteria of Toxicity Characteristic Leaching Procedure (TCLP), all the slags were recyclable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号