首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of jojoba methyl ester as a pilot fuel was investigated for almost the first time as a way to improve the performance of dual fuel engine running on natural gas or liquefied petroleum gas (LPG) at part load. The dual fuel engine used was Ricardo E6 variable compression diesel engine and it used either compressed natural gas (CNG) or LPG as the main fuel and jojoba methyl ester as a pilot fuel. Diesel fuel was used as a reference fuel for the dual fuel engine results. During the experimental tests, the following have been measured: engine efficiency in terms of specific fuel consumption, brake power output, combustion noise in terms of maximum pressure rise rate and maximum pressure, exhaust emissions in terms of carbon monoxide and hydrocarbons, knocking limits in terms of maximum torque at onset of knocking, and cyclic variability data of 100 engine cycles in terms of maximum pressure and its pressure rise rate average and standard deviation. The tests examined the following engine parameters: gaseous fuel type, engine speed and load, pilot fuel injection timing, pilot fuel mass and compression ratio. Results showed that using the jojoba fuel with its improved properties has improved the dual fuel engine performance, reduced the combustion noise, extended knocking limits and reduced the cyclic variability of the combustion.  相似文献   

2.
In recent years, efforts have been directed towards environmentally freindly sources of alternative fuels for internal combustion engines. This paper investigates combustion characteristics and performance of natural gas in an unmodified compression ignition engine using diesel fuel pilot injection. The factors influencing knock limits in dual fuel gas engines have been identified. This report is confined to experimental work in a naturally aspirated dual gas engine and the results obtained were compared with the diesel fueled test engine. Cylinder pressure diagrams recorded indicate longer ignition delay and burning rates with an increased pressure variation.  相似文献   

3.
以柴油引燃天然气发动机为研究对象,针对柴油引燃油的扩散燃烧和天然气气体燃料的均质预混燃烧的特点,分别建立了引燃油多区燃烧模型和基于分形理论的预混天然气气体燃料燃烧模型.在试验验证所建模型的基础上,分析了引燃油量、喷油提前角和发动机转速对柴油引燃天然气发动机性能的影响.研究表明,适当增加引燃油量和减小喷油提前角可以降低柴油引燃天然气发动机的最大缸内压力升高率,从而有利于遏制柴油引燃天然气发动机高负荷时的爆震倾向.  相似文献   

4.
基于CONVERGE软件建立了预燃室式柴油/天然气双燃料船用二冲程发动机的三维计算流体动力学(computational fluid dynamics,CFD)模型,研究了压缩比、引燃柴油质量和喷射压力、引燃柴油喷射角度对燃烧过程的影响,探索了提高柴油/天然气双燃料船用发动机热效率的燃烧策略。结果表明:提高压缩比可以提高缸内的最大爆发压力,从而有效提高热效率,但受发动机机械强度的限制,压缩比为12.5时可以获得较佳的效果;适当增大引燃油量和喷射压力,可以使射流火焰的着火点增加,点火能量增强,对热效率略有改善;调节引燃柴油的喷射角度,将引燃油喷射到CH4浓度较高区域可以获得更好的引燃效果,降低指示燃料消耗率;提高压缩比至12.5结合推迟喷油策略对热效率的改善效果更为明显。  相似文献   

5.
F-T柴油对直喷式柴油机燃烧和排放的影响   总被引:7,自引:0,他引:7  
在两种不同供油提前角下研究了燃用F-T柴油对直喷式柴油机燃烧和排放特性的影响,结果表明:发动机不做任何调整时,与0号柴油相比,燃用F-T柴油的滞燃期较短,预混燃烧放热峰值较低,扩散燃烧放热峰值较高,最高燃烧压力和最大压力升高率较低,燃油消耗率和热效率都得到了改善,HC、CO、NOx和碳烟排放同时降低。当供油提前角推迟3℃A时,燃用F-T柴油燃烧持续期明显缩短,预混燃烧放热峰值、最高燃烧压力和最大压力升高率进一步降低,扩散燃烧放热峰值略有升高,燃油消耗率变化不大,NOx排放进一步降低, HC、CO和碳烟略有增加,其中HC排放与原柴油机相当,而CO和碳烟仍远低于原柴油机。  相似文献   

6.
Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experimental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than conventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NOx and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shortened; the peak values of premixed burning rate, the combustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation. Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NOx emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions.  相似文献   

7.
供油提前角对天然气/柴油双燃料发动机排放的影响   总被引:9,自引:0,他引:9  
天然气/柴油双燃料发动机的排放指标受多种因素的制约,其中作为引燃燃料-柴油的供油提前角变化对发动机排放特性影响较大。试验结果表明,在可调节的供油提前角范围内,双燃料发动机排放中的THC相差3倍以上,CO相差近1.5倍左右,NOx相差1.5倍左右。而且,在保证原机标定功率和动力性的基础上,双燃料发动机的供油提前角需要适当调整,并存在最佳供油提前角,保证良好的排放性能。  相似文献   

8.
LPG/柴油混合燃料在直喷式柴油机上的应用研究   总被引:2,自引:1,他引:2  
采用带传统泵嘴供给系统的自然吸气、直喷柴油机,经改装燃用LPG/柴油混合燃料。通过与原柴油机的对比试验可知,LPG混合比为30%(L30)的混合燃料的滞燃期明显延长,最高燃烧压力和最大压力升高率降低,对应的曲轴转角滞后,最大燃烧放热率与原机基本相同,对应的曲轴转角滞后。在转速为2000r/min时,L30发动机的压力曲线出现双峰,近似于MK(modulated kinetics)燃烧。动力性与经济性与原机基本相同,燃烧噪声降低。碳烟和NOx排放大幅下降,CO略有降低,HC排放有所升高。  相似文献   

9.
采用KIVA-3V软件耦合多目标遗传优化算法NSGA-3,开展了柴油/天然气双燃料发动机的引燃柴油喷射参数、运行参数和燃烧室结构参数的协同优化研究.将湍流火焰速度封闭模型(TFSC)与PaSR燃烧模型耦合,建立柴油/天然气双燃料发动机复合燃烧模型.结果表明:复合燃烧模型能较好地模拟柴油/天然气发动机的燃烧过程;采用KIVA3V-NSGA3程序进行了双燃料发动机运行参数、喷射参数等多目标参数的协同优化;多目标参数优化结果的数据对比分析揭示了设计参数对目标参数的影响规律;涡流比和喷射参数的变化会对燃烧室内温度、NOx和CH4的分布产生较大影响.  相似文献   

10.
利用CONVERGE软件基于L23/30DF型船用天然气发动机建立了双天然气喷嘴、双引燃柴油喷嘴的直喷天然气发动机的缸内燃烧过程的CFD计算模型,计算了不同的柴油和天然气喷射时刻和间隔下发动机缸内燃烧和排放过程.结果 表明:引燃柴油的喷射时刻及其与天然气喷射时刻的间隔,对直喷式天然气发动机燃烧和排放性能有重要影响.当喷...  相似文献   

11.
柴油、天然气双燃料发动机的燃烧特性分析   总被引:11,自引:2,他引:9  
研究了柴油,天然气双燃料发动机的燃烧特性,并着重分析了引燃柴油供给系统参数对双燃料发支持性的影响。以试验为基础,首先简要比较了柴油,天然气双燃料发动机与柴油机的燃烧特性,并对比了负荷对双燃料发动机燃烧特性的影响。然后分析了最小循环喷油量,引燃柴油量,引燃油喷射压力,喷嘴参数及供油提前角等引燃柴油供给系统参数对最高爆发压力,燃烧放热率,着火开始时间、累积燃烧放热率等柴油,天然气双燃料发动机燃烧特性的  相似文献   

12.
针对天然气/柴油双燃料转子发动机的缸内工作过程,基于FLUENT软件建立了耦合正庚烷简化机理的二维计算模型,并利用文献数据进行了验证。在此基础上,研究了纯柴油工况下喷射持续期对燃烧过程的影响,获得了较好的喷射持续期;并在该持续期下对天然气替代率对转子发动机燃烧过程的影响进行了研究。研究结果表明:保持当量比不变,喷射持续期的变化会对燃油浓度分布产生影响,从而影响燃烧过程;采用45℃A喷油持续期可以在保持较高缸内压力的同时减少污染物的生成。天然气替代率的提高会导致初期燃烧速度的减缓和后期燃烧速度的增大;随着天然气替代率的增大,燃烧初期同一偏心轴转角下的缸内压力和温度逐渐降低,燃烧后期则呈相反的趋势。采用50%天然气替代率可以在保持较高缸内压力的同时大大降低CO和Soot生成量,而NO生成量略有升高。  相似文献   

13.
Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experimental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than conventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NO x and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shortened; the peak values of premixed burning rate, the combustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation. Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NO x emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions. __________ Translated from Chinese Internal Combustion Engine Engineering, 2007, 28(2): 19–23 [译自: 内燃机工程]  相似文献   

14.
介绍了一种基于原机循环油量的柴油机-天然气发动机调节原则,根据此燃料调节原则可以确定引燃柴油和天然气的控制策略:首先将加速踏板位置按照原机油泵油量解释为总油量需求;然后按替代率确定出与总油量需求等热值的两种燃料的量;最后根据标定的数据得到目标油门位置和天然气喷射脉宽。在Matlab/Simulink环境下配置硬件资源,编写带有信号输入/输出、控制参数计算、工作模式确定与切换等完整可靠功能的控制程序,生成可执行文件并下载到MotoTron硬件内,然后在一台潍柴机械泵柴油机改装的双燃料发动机上对控制程序中的MAP进行了标定。最终的验证试验结果表明:按上述循环油量调节方法开发出的双燃料发动机工作稳定,能够实现准确快速的控制;其动力性与原机水平一致,虽然有效效率普遍低于原机,但得益于天然气的低价,其具有诱人的成本优势。  相似文献   

15.
The combustion of hydrogen–diesel blend fuel was investigated under simulated direct injection (DI) diesel engine conditions. The investigation presented in this paper concerns numerical analysis of neat diesel combustion mode and hydrogen enriched diesel combustion in a compression ignition (CI) engine. The parameters varied in this simulation included: H2/diesel blend fuel ratio, engine speed, and air/fuel ratio. The study on the simultaneous combustion of hydrogen and diesel fuel was conducted with various hydrogen doses in the range from 0.05% to 50% (by volume) for different engine speed from 1000 – 4000 rpm and air/fuel ratios (A/F) varies from 10 – 80. The results show that, applying hydrogen as an extra fuel, which can be added to diesel fuel in the (CI) engine results in improved engine performance and reduce emissions compared to the case of neat diesel operation because this measure approaches the combustion process to constant volume. Moreover, small amounts of hydrogen when added to a diesel engine shorten the diesel ignition lag and, in this way, decrease the rate of pressure rise which provides better conditions for soft run of the engine. Comparative results are given for various hydrogen/diesel ratio, engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions.  相似文献   

16.
Partial combustion of biomass in the gasifier generates producer gas that can be used as supplementary or sole fuel for internal combustion engines. Dual fuel mode operation using coir-pith derived producer gas and rubber seed oil as pilot fuel was analyzed for various producer gas–air flow ratios and at different load conditions. The engine is experimentally optimized with respect to maximum pilot fuel savings in the dual fuel mode operation. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual-fuel mode of operation with oil-coir-pith operation is found to be in the higher side at all load conditions. Exhaust emission was found to be higher in the case of dual fuel mode of operation as compared to neat diesel/oil operation. Engine performance characteristics are inferior in fully renewable fueled engine operation but it suitable for stationary engine application, particularly power generation.  相似文献   

17.
采用气口顺序喷射、稀燃、全电控柴油/天燃气双燃料发动机方案,对斯太尔WD615.64增压非中冷柴油机进行了改装。试验结构表明,改装后的发动机NOx、颗粒和NMHC排放均达到了欧Ⅱ排放指标。CO和HC(含甲烷)可以通过后处理解决。  相似文献   

18.
Homogeneous charge compression ignition (HCCI) combustion mode provides very low NOx and soot emissions; however, it has some challenges associated with hydrocarbon (HC) emissions, fuel consumption, difficult control of start of ignition and bad behaviour to high loads. Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production in diesel and HCCI combustion mode. However EGR has different effects on combustion and emissions, which are difficult to distinguish. This work is intended to characterize an engine that has been modified from the base diesel engine (FL1 906 DEUTZ-DITER) to work in HCCI combustion mode. It shows the experimental results for the modified diesel engine in HCCI combustion mode fueled with commercial diesel fuel compared to the diesel engine mode. An experimental installation, in conjunction with systematic tests to determine the optimum crank angle of fuel injection, has been used to measure the evolution of the cylinder pressure and to get an estimate of the heat release rate from a single-zone numerical model. From these the angle of start of combustion has been obtained. The performances and emissions of HC, CO and the huge reduction of NOx and smoke emissions of the engine are presented. These results have allowed a deeper analysis of the effects of external EGR on the HCCI operation mode, on some engine design parameters and also on NOx emission reduction.  相似文献   

19.
An experimental investigation has been carried out to examine for the first time the performance and combustion noise of an indirect injection diesel engine running with new fuel derived from pure jojoba oil, jojoba methyl ester, and its blends with gas oil. A Ricardo E6 compression swirl diesel engine was fully instrumented for the measurement of combustion pressure and its rise rate and other operating parameters. Test parameters included the percentage of jojoba methyl ester in the blend, engine speed, load, injection timing and engine compression ratio. Results showed that the new fuel derived from jojoba is generally comparable and good replacement to gas oil in diesel engine at most engine operating conditions, in terms of performance parameters and combustion noise produced.  相似文献   

20.
基于一台当量比燃烧的天然气发动机,采用三维燃烧分析与发动机一维热力学计算相结合的方式开展了废气再循环(exhaust gas recirculation,EGR)率及点火时刻对缸内燃烧过程和发动机排温的影响研究.研究结果表明:随着EG R率的增加,燃烧相位后移,燃烧持续期延长,放热率峰值减小,最大压升率、缸内最高燃烧压...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号