首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The problem for dynamic IP address assignment is manifest in mobile ad hoc networks, especially in 4G all-IP-based heterogeneous networks. Existing solutions are mainly riveted to decentralized algorithms, applying a large number of broadcast messages to (1) maintain available IP address pools and (2) ensure no address duplication occurring. In this paper, we propose a ring-based address autoconfiguration protocol to configure node addresses. This work aims at the decentralized ring-based address autoconfiguration (DRAA) protocol, which has the advantage of low latency, low communication overhead and high uninterruptible connection. The DRAA protocol is a low-latency solution because each node independently allocates partial IP addresses and does not need to perform the duplicate addresses detection (DAD) during the node-join operation. Communication overhead is significantly lessened in that DRAA protocol uses the logical ring, thus utilizing fewer control messages solely by means of uni-cast messages to distribute address resources and to retrieve invalid addresses. Furthermore, if duplicate addresses are shown at network merging, the DRAA protocol checks the number of both TCP connections and of nodes to allow duplicate nodes to rejoin the smaller network so that lost connections are fast re-connected. To improve communication overhead and provide the evenness of address resources, the centralized ring-based address autoconfiguration (CRAA) protocol is discussed. The CRAA protocol reduces larger numbers of broadcast messages during network merging. The other contribution is that our CRAA protocol also has an even capability so that address resources can be evenly distributed in each node in networks; this accounts for the reason our solution is suitable for large-scale networks. Finally, the performance analysis illustrates performance achievements of RAA protocols. The simulation result shows that the DRAA protocol has the shortest latency, that the CRAA protocol has the capability to evenly distribute address resources and that both of DRAA and CRAA protocols are the good solutions which achieve low communication overhead and high uninterruptible connection.  相似文献   

2.
Contention-based forwarding for mobile ad hoc networks   总被引:10,自引:0,他引:10  
Holger  Jrg  Michael  Martin  Hannes 《Ad hoc Networks》2003,1(4):351-369
Existing position-based unicast routing algorithms which forward packets in the geographic direction of the destination require that the forwarding node knows the positions of all neighbors in its transmission range. This information on direct neighbors is gained by observing beacon messages each node sends out periodically.

Due to mobility, the information that a node receives about its neighbors becomes outdated, leading either to a significant decrease in the packet delivery rate or to a steep increase in load on the wireless channel as node mobility increases. In this paper, we propose a mechanism to perform position-based unicast forwarding without the help of beacons. In our contention-based forwarding scheme (CBF) the next hop is selected through a distributed contention process based on the actual positions of all current neighbors. For the contention process, CBF makes use of biased timers. To avoid packet duplication, the first node that is selected suppresses the selection of further nodes. We propose three suppression strategies which vary with respect to forwarding efficiency and suppression characteristics. We analyze the behavior of CBF with all three suppression strategies and compare it to an existing greedy position-based routing approach by means of simulation with ns-2. Our results show that CBF significantly reduces the load on the wireless channel required to achieve a specific delivery rate compared to the load a beacon-based greedy forwarding strategy generates.  相似文献   


3.
We propose an innovative resource management scheme for TDMA based mobile ad hoc networks. Since communications between some important nodes in the network are more critical, they should be accepted by the network with high priority in terms of network resource usage and quality of service (QoS) support. In this scheme, we design a location-aware bandwidth pre-reservation mechanism, which takes advantage of each mobile node’s geographic location information to pre-reserve bandwidth for such high priority connections and thus greatly reduces potential scheduling conflicts for transmissions. In addition, an end-to-end bandwidth calculation and reservation algorithm is proposed to make use of the pre-reserved bandwidth. In this way, time slot collisions among different connections and in adjacent wireless links along a connection can be reduced so that more high priority connections can be accepted into the network without seriously hurting admissions of other connections. The salient feature of our scheme is the collaboration between the routing and MAC layer that results in the more efficient spatial reuse of limited resources, which demonstrates how cross-layer design leads to better performance in QoS support. Extensive simulations show that our scheme can successfully provide better communication quality to important nodes at a relatively low price. Finally, several design issues and future work are discussed. Xiang Chen received the B.E. and M.E. degrees in electrical engineering from Shanghai Jiao Tong University, Shanghai, China, in 1997 and 2000, respectively. Afterwards, he worked as a MTS (member of technical staff) in Bell Laboratories, Beijing, China. He is currently working toward the Ph.D. degree in the department of Electrical and Computer Engineering at the University of Florida. His research is focused on protocol design and performance evaluation in wireless networks, including cellular networks, wireless LANs, and mobile ad hoc networks. He is a member of Tau Beta Pi and a student member of IEEE. Wei Liu received the BE and ME degrees in electrical engineering from Huazhong University of Science and Technology, Wuhan, China, in 1998 and 2001, respectively. He is currently pursuing the P.hD. degree in the Department of Electrical and Computer Engineering, University of Florida, Gainesville, where he is a research assistant in the Wireless Networks Laboratory (WINET). His research interest includes QoS, secure and power efficient routing, and MAC protocols in mobile ad hoc networks and sensor networks. He is a student member of the IEEE. Hongqiang Zhai received the B.E. and M.E. degrees in electrical engineering from Tsinghua University, Beijing, China, in July 1999 and January 2002 respectively. He worked as a research intern in Bell Labs Research China from June 2001 to December 2001, and in Microsoft Research Asia from January 2002 to July 2002. Currently he is pursuing the Ph.D. degree in the Department of Electrical and Computer Engineering, University of Florida. He is a student member of IEEE. Yuguang Fang received a Ph.D. degree in Systems and Control Engineering from Case Western Reserve University in January 1994, and a Ph.D. degree in Electrical Engineering from Boston University in May 1997. From June 1997 to July 1998, he was a Visiting Assistant Professor in Department of Electrical Engineering at the University of Texas at Dallas. From July 1998 to May 2000, he was an Assistant Professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology. In May 2000, he joined the Department of Electrical and Computer Engineering at University of Florida where he got the early promotion to Associate Professor with tenure in August 2003 and to Full Professor in August 2005. He has published over 180 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He is currently serving as an Editor for many journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEETransactions on Mobile Computing, and ACM Wireless Networks. He is also actively participating in conference organization such as the Program Vice-Chair for IEEE INFOCOM’2005, Program Co-Chair for the Global Internet and Next Generation Networks Symposium in IEEE Globecom’2004 and the Program Vice Chair for 2000 IEEE Wireless Communications and Networking Conference (WCNC’2000).  相似文献   

4.
The proper functioning of mobile ad hoc networks depends on the hypothesis that each individual node is ready to forward packets for others. This common assumption, however, might be undermined by the existence of selfish users who are reluctant to act as packet relays in order to save their own resources. Such non-cooperative behavior would cause the sharp degradation of network throughput. To address this problem, we propose a credit-based Secure Incentive Protocol (SIP) to stimulate cooperation among mobile nodes with individual interests. SIP can be implemented in a fully distributed way and does not require any pre-deployed infrastructure. In addition, SIP is immune to a wide range of attacks and is of low communication overhead by using a Bloom filter. Detailed simulation studies have confirmed the efficacy and efficiency of SIP. This work was supported in part by the U.S. Office of Naval Research under Young Investigator Award N000140210464 and under grant N000140210554. Yanchao Zhang received the B.E. degree in Computer Communications from Nanjing University of Posts and Telecommunications, Nanjing, China, in July 1999, and the M.E. degree in Computer Applications from Beijing University of Posts and Telecommunications, Beijing, China, in April 2002. Since September 2002, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida, Gainesville, Florida, USA. His research interests are network and distributed system security, wireless networking, and mobile computing, with emphasis on mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and heterogeneous wired/wireless networks. Wenjing Lou is an assistant professor in the Electrical and Computer Engineering department at Worcester Polytechnic Institute. She obtained her Ph.D degree in Electrical and Computer Engineering from University of Florida in 2003. She received the M.A.Sc degree from Nanyang Technological University, Singapore, in 1998, the M.E degree and the B.E degree in Computer Science and Engineering from Xi'an Jiaotong University, China, in 1996 and 1993 respectively. From Dec 1997 to Jul 1999, she worked as a Research Engineer in Network Technology Research Center, Nanyang Technological University. Her current research interests are in the areas of ad hoc and sensor networks, with emphases on network security and routing issues. Wei Liu received his B.E. and M.E. in Electrical and Information Engineering from Huazhong University of Science and Technology, Wuhan, China, in 1998 and 2001. In August 2005, he received his PhD in Electrical and Computer Engineering from University of Florida. Currently, he is a senior technical member with Scalable Network Technologies. His research interest includes cross-layer design, and communication protocols for mobile ad hoc networks, wireless sensor networks and cellular networks. Yuguang Fang received a Ph.D. degree in Systems Engineering from Case Western Reserve University in January 1994 and a Ph.D degree in Electrical Engineering from Boston University in May 1997. He was an assistant professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology from July 1998 to May 2000. He then joined the Department of Electrical and Computer Engineering at University of Florida in May 2000 as an assistant professor, got an early promotion to an associate professor with tenure in August 2003 and a professor in August 2005. He has published over 150 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He has served on many editorial boards of technical journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing and ACM Wireless Networks. He is a senior member of the IEEE.  相似文献   

5.
Recently more and more research interest focuses on the energy efficient routing in mobile ad hoc networks and many related routing algorithms are reported. In this paper, a new optimized priority based energy efficient routing algorithm is presented and priority is added to the existing routing algorithm according to the residual energy proportion of the nodes. Lower residual energy means lower priority and the nodes with lower priority are less likely to forward packets to other nodes. The algorithm needs no global information of the networks and only a little modification is needed to the existing algorithm, so it is practical to be implemented. The algorithm can improve the performance of routing discovery, routing maintenance and cache management at the same time. Some optimization strategy is taken to reduce the network overhead and the lifetime of the network is much longer and the network with our algorithm can transfer much more effective data. Simulation with NS-2 is done and satisfying results are obtained with this algorithm. The results show that the algorithm is efficient.  相似文献   

6.
We design a transport protocol that uses artificial neural networks (ANNs) to adapt the audio transmission rate to changing conditions in a mobile ad hoc network. The response variables of throughput, end-to-end delay, and jitter are examined. For each, statistically significant factors and interactions are identified and used in the ANN design. The efficacy of different ANN topologies are evaluated for their predictive accuracy. The Audio Rate Cognition (ARC) protocol incorporates the ANN topology that appears to be the most effective into the end-points of a (multi-hop) flow, using it to adapt its transmission rate. Compared to competing protocols for media streaming, ARC achieves a significant reduction in packet loss and increased goodput while satisfying the requirements of end-to-end delay and jitter. While the average throughput of ARC is less than that of TFRC, its average goodput is much higher. As a result, ARC transmits higher quality audio, minimizing root mean square and Itakura–Saito spectral distances, as well as several parametric distance measures. In particular, ARC minimizes linear predictive coding cepstral (sic) distance, which closely correlates to subjective audio measures.  相似文献   

7.
In this paper, we present a new quality of service (QoS) routing protocol for mobile ad hoc networks (MANETs). Most of the existing routing protocols assume homogeneous nodes in MANETs, i.e., all nodes have the same communication capabilities and characteristics. However, in many ad hoc networks, nodes are not the same. Some nodes have longer transmission range, larger transmission bandwidth, and are more reliable and robust than other nodes. We take advantage of the non-homogeneous property to design more efficient QoS routing protocol. And node location information is used to aid routing. We also develop a new algorithm to calculate end-to-end bandwidth for a given path. Our QoS routing protocol contains end-to-end bandwidth calculation and bandwidth reservation. QoS route is discovered and setup only when it is needed. Extensive simulation studies demonstrate the good performance of the QoS routing protocol.  相似文献   

8.
This paper focuses on investigating immunological principles in designing a multi-agent security architecture for intrusion detection and response in mobile ad hoc networks. In this approach, the immunity-based agents monitor the situation in the network. These agents can take appropriate actions according to the underlying security policies. Specifically, their activities are coordinated in a hierarchical fashion while sensing, communicating, decision and generating responses. Such an agent can learn and adapt to its environment dynamically and can detect both known and unknown intrusions. The proposed intrusion detection architecture is designed to be flexible, extendible, and adaptable that can perform real-time monitoring. This paper provides the conceptual view and a general framework of the proposed system. In the end, the architecture is illustrated by an example to show it can prevent the attack efficiently.  相似文献   

9.
Ad hoc networks are a type of mobile network that functions without any fixed infrastructure. One of the weaknesses of ad hoc networks is that a route used between a source and a destination is likely to break during communication. To solve this problem, one approach consists of selecting routes whose nodes have the most stable behavior. Another strategy aims at improving the route repair procedure. This paper proposes a method for improving the success rate of local route repairs in mobile ad hoc networks. This method is based on the density of the nodes in the neighborhood of a route and on the availability of nodes in this neighborhood. Theoretical computation and simulation results show that the data packet loss rate decreased significantly compared to other methods which are well-documented in the literature. In addition, the time required to complete a local route repair following a failure was significantly reduced.  相似文献   

10.
Nikos  Dimitris  Christos   《Ad hoc Networks》2007,5(3):289-298
Security of mobile ad hoc networks (MANET) has become a more sophisticated problem than security in other networks, due to the open nature and the lack of infrastructure of such networks. In this paper, the security challenges in intrusion detection and authentication are identified and the different types of attacks are discussed. We propose a two-phase detection procedure of nodes that are not authorized for specific services and nodes that have been compromised during their operation in MANET. The detection framework is enabled with the main operations of ad hoc networking, which are found at the link and network layers. The proposed framework is based on zero knowledge techniques, which are presented through proofs.  相似文献   

11.
With the prevalence of mobile devices, it is of much interest to study the properties of mobile ad hoc networks. In this paper, we extend the concept of diameter from static ad hoc network to mobile ad hoc network, which is the expected number of rounds for one node to transmit a message to all other nodes in the network, reflecting the worst end‐to‐end delay between any two node. Specifically, we investigate the diameter of identically and independently mobility model in cell‐partitioned network and random walk mobility model in two‐dimensional torus network, achieving the boundary , when (k=Ω(n)), and O(k log2k), respectively, where n is the number of nodes and k is the number of cells of network and especially under random walk mobility model . A comparison is made among the diameter of mobile ad hoc networks under identically and independently mobility model, random walk mobility model and static ad hoc network, showing that mobility dramatically decreases the diameter of the network and speed is an essential and decisive factor of diameter. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
IP address autoconfiguration of mobile nodes is highly desirable in the practical usage of most mobile ad hoc networks (MANETs). This paper proposes cluster-based autoconfiguration, a novel approach for the efficient address autoconfiguration of MANETs. The cluster structure derived from clustering techniques is used to manage address assignment and conflict resolution. By introducing the concept of virtual address agents (AAs), the proposed approach can be applicable to many existing clustering protocols. Finally, analysis and simulation demonstrate that the proposed scheme outperforms the previous autoconfiguration approaches.
Longjiang LiEmail:
  相似文献   

13.
An ad hoc network is a collection of nodes that do not need to rely on a predefined infrastructure to keep the network connected. Nodes communicate amongst each other using wireless radios and operate by following a peer‐to‐peer network model. In this article, we propose a multifold node authentication approach for protecting mobile ad hoc networks. The security requirements for protecting data link and network layers are identified and the design criteria for creating secure ad hoc networks using multiple authentication protocols are analysed. Such protocols, which are based on zero‐knowledge and challenge‐response techniques, are presented through proofs and simulation results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
This paper proposes a Markov model of link connectivity for mobile ad hoc networks. Under a random behavior, the model provides a unified approach to describe many different mobility models including entity mobility models and group mobility models. Using the model, we can predict the time dependence of link connectivity, and estimate a settling time for which node movements are considered in a transient state. We verify the model with the simulation results of four different mobility models using a global connectivity and a link duration distribution. This research was supported in part by the National Science Foundation under grant CCF-0514975. Seok K. Hwang received the B.S. degree in Control and Instrumentation Engineering from Korea University, Korea in 1998. He received the M.S. degreeand the Ph.D.degree in Electrical Engineering at POSTECH, Korea in 2000 and 2006, respectively.His research interests include intelligence controls and computational intelligence for multi-objective optimization problems. He is working on multimedia communication as a senior researcher at Korea Telecom since 2006. Dongsoo Stephen Kim received the B.S. degree from Korean University in 1987, the M.S. degree in computer science from the University of Texas in 1994, and the Ph.D. degree in computer science and engineering from the University of Minnesota in 1998. During 1986–2002, he was a Research Associate at Electronic and Telecommunication Research Institute, Taejon, Korea. In 1998–2000, he was a project manager at Megaxess Inc., Germantown, Maryland. He joined the Department of Electrical and Computer Engineering at Purdue School of Engineering and Technology, IUPUI in 2000. His current research interests include mobile wireless networks, mobility modeling, traffic modeling, and performance evaluation of communication networks.  相似文献   

15.
Nodes in a mobile ad hoc network are often vulnerable to failures. The failures could be either due to fading effects, battery drainage, or as a result of compromised nodes that do not participate in network operations. Intermittent node failures can disrupt routing functionalities. As such, it is important to provide redundancy in terms of providing multiple node-disjoint paths from a source to a destination. In line with this objective, we first propose a modified version of the widely studied ad hoc on-demand distance vector routing protocol to facilitate the discovery of multiple node-disjoint paths from a source to a destination. We find that very few of such paths can be found. Furthermore, as distances between sources and destinations increase, bottlenecks inevitably occur and thus, the possibility of finding multiple paths is considerably reduced. We conclude that it is necessary to place what we call reliable nodes (in terms of both being robust to failure and being secure) in the network to support efficient routing operations. We propose a deployment strategy that determines the positions and the trajectories of these reliable nodes such that we can achieve a framework for reliably routing information. We define a notion of a reliable path which is made up of multiple segments, each of which either entirely consists of reliable nodes, or contains a preset number of multiple paths between the end points of the segment. We show that the probability of establishing a reliable path between a random source and destination pair increases tremendously even with a small number of reliable nodes when we use our algorithm to appropriately position these reliable nodes.  相似文献   

16.
移动分布式无线网络中具有QoS保证的UPMA协议   总被引:10,自引:1,他引:10  
该文基于有效竞争预约接入、无冲突轮询传输的思想提出了支持节点移动性、多跳网络结构和服务质量(QoS)的依据用户妥善安排的多址接入(UPMA)协议。它大大提高了信道的使用效率,保证了发送节点能快速接入信道,同时,最大程度地保证所有实时业务的时延和带宽要求。最后,我们考察了它对Internet数据业务的支持性能。  相似文献   

17.
The mobile ad hoc network (MANET) has recently been recognized as an attractive network architecture for wireless communication. Reliable broadcast is an important operation in MANET (e.g., giving orders, searching routes, and notifying important signals). However, using a naive flooding to achieve reliable broadcasting may be very costly, causing a lot of contention, collision, and congestion, to which we refer as the broadcast storm problem. This paper proposes an efficient reliable broadcasting protocol by taking care of the potential broadcast storm problem that could occur in the medium-access level. Existing protocols are either unreliable, or reliable but based on a too costly approach. Our protocol differs from existing protocols by adopting a low-cost broadcast, which does not guarantee reliability, as a basic operation. The reliability is ensured by additional acknowledgement and handshaking. Simulation results do justify the efficiency of the proposed protocol.  相似文献   

18.
A core-based forwarding multicast tree is a shortest path tree rooted at core node that distributes multicast packets to all group members via the tree after the packets are sent to the core. Traditionally, the bandwidth cost consumed by transmitting a packet from the core via the tree is evaluated by the total weights of all the edges. And, the bandwidth cost is minimized by constructing the multicast tree that has minimum total weights of edges to span all group members. However, when the local broadcast operation is used to multicast a packet, we found that the bandwidth cost is supposed to be evaluated by the total weights of all senders that include the core and all non-leaves. Since the multicast tree with the number of nodes greater than or equal to three has minimum bandwidth cost only when the core is not a leaf, it leads us to find the multicast tree with the minimum number of non-leaves when each sender node has a unit weight. However, no polynomial time approximation scheme can be found for the minimum non-leaf multicast tree problem unless P = NP since the problem is not only NP-hard but also MAX-SNP hard. Thus, a heuristic is proposed to dynamically reduce the number of non-leaves in the multicast tree. Experimental results show that the multicast tree after the execution of our method has smaller number of non-leaves than others in the geometrically distributed network model.  相似文献   

19.
Mobile Ad Hoc Networks (MANET), due to their lack of physical infrastructures or centralized online authorities, pose a number of security challenges to a protocol designer. In particular, several typical application scenarios demand the design of protocols that cannot base their security on the existence of trusted parties or setup information, but rather need to leverage uniquely on assumptions limiting the corrupting power of the adversaries. This naturally defines security design and analysis paradigms similar to those of the threshold cryptography area, where it is typically assumed that an adversary can corrupt up to a limited amount of entities or resources. Therefore a secure realization of primitives from threshold cryptography in MANET promises to be applicable to several MANET protocols. However, directly applying known threshold cryptography solutions for wired network into MANETs faces serious challenges. In particular, we noted a major design difficulty due to the lack of full network connectivity that significantly constrained the network topology assumptions under which a MANET threshold signature scheme can be proved secure. In this paper we formalize, investigate and present a new MANET threshold signature scheme that is secure under significantly improved topology and setup assumptions. Surprisingly, we break through an apparent barrier due to well-known results from the distributed computing area.  相似文献   

20.
M. Orlinski  N. Filer 《Ad hoc Networks》2013,11(5):1641-1654
Cluster detection has been widely applied to the problem of efficient data delivery in highly dynamic mobile ad hoc networks. By grouping participants who meet most often into clusters, hierarchical structures in the network are formed which can be used to efficiently transfer data between the participants. However, data delivery algorithms which rely on clusters can be inefficient in some situations. In the case of dynamic networks formed by encounters between humans, sometimes called Pocket Switched Networks (PSNs), cluster based data delivery methods may see a drop in efficiency if obsolete cluster membership persists despite changes to behavioural patterns. Our work aims to improve the relevance of clusters to particular time frames, and thus improve the performance of cluster based data delivery algorithms in PSNs. Furthermore, we will show that by detecting spatio-temporal clusters in PSNs, we can now improve on the data delivery success rates and efficiency of data delivery algorithms which do not use clustering; something which has been difficult to demonstrate in the past.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号