首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In general, city trip planning consists of two main steps: knowing Points‐Of‐Interest (POIs), and then planning a tour route from the current point to next preferred POIs. We mainly consider the metro for traveling around touristic cities as the main means of transportation. In this context, existing tools lack a capability to effectively visualize POIs on the metro map for trip planning. To bridge this gap, we propose an interactive framework that holistically combines presentations of POIs and a metro network. Our idea is to identify popular POIs based on visual worth computation, and to introduce POI discovery for effectively identifying POIs within reach of a metro network for users. We use octilinear layouts to highlight the metro network, and show representative POI images in the layout space visualized within a user‐specified viewing window. We have implemented our working prototype showing touristic cities with a metro network. We have factored out various design guidelines that are basis for designing our method, and validated our approach with a user study surveying 70 individuals.  相似文献   

2.
The wide spread of location-based social networks brings about a huge volume of user check-in data, which facilitates the recommendation of points of interest (POIs). Recent advances on distributed representation shed light on learning low dimensional dense vectors to alleviate the data sparsity problem. Current studies on representation learning for POI recommendation embed both users and POIs in a common latent space, and users’ preference is inferred based on the distance/similarity between a user and a POI. Such an approach is not in accordance with the semantics of users and POIs as they are inherently different objects. In this paper, we present a novel translation-based, time and location aware (TransTL) representation, which models the spatial and temporal information as a relationship connecting users and POIs. Our model generalizes the recent advances in knowledge graph embedding. The basic idea is that the embedding of a <time, location> pair corresponds to a translation from embeddings of users to POIs. Since the POI embedding should be close to the user embedding plus the relationship vector, the recommendation can be performed by selecting the top-k POIs similar to the translated POI, which are all of the same type of objects. We conduct extensive experiments on two real-world datasets. The results demonstrate that our TransTL model achieves the state-of-the-art performance. It is also much more robust to data sparsity than the baselines.  相似文献   

3.
Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface reconstruction). While several approaches exist for the calculation of normal directions, in most cases, their orientation has to be determined in a subsequent step. This paper generalizes propagation‐based approaches by reformulating the task as a graph‐based energy minimization problem. By applying global solvers, we can achieve more consistent orientations than simple greedy optimizations. Furthermore, we present a streaming‐based framework for orienting large point clouds. This framework orients patches locally and generates a globally consistent patch orientation on a reduced neighbour graph, which achieves similar quality to orienting the full graph.  相似文献   

4.
Temporally consistent motion segmentation from RGB‐D videos is challenging because of the limitations of current RGB‐D sensors. We formulate segmentation as a motion assignment problem, where a motion is a sequence of rigid transformations through all frames of the input. We capture the quality of each potential assignment by defining an appropriate energy function that accounts for occlusions and a sensor‐specific noise model. To make energy minimization tractable, we work with a discrete set instead of the continuous, high dimensional space of motions, where the discrete motion set provides an upper bound for the original energy. We repeatedly minimize our energy, and in each step extend and refine the motion set to further lower the bound. A quantitative comparison to the current state of the art demonstrates the benefits of our approach in difficult scenarios.  相似文献   

5.
Among the most exciting advances in early vision has been the development of efficient energy minimization algorithms for pixel-labeling tasks such as depth or texture computation. It has been known for decades that such problems can be elegantly expressed as Markov random fields, yet the resulting energy minimization problems have been widely viewed as intractable. Recently, algorithms such as graph cuts and loopy belief propagation (LBP) have proven to be very powerful: for example, such methods form the basis for almost all the top-performing stereo methods. However, the tradeoffs among different energy minimization algorithms are still not well understood. In this paper we describe a set of energy minimization benchmarks and use them to compare the solution quality and running time of several common energy minimization algorithms. We investigate three promising recent methods graph cuts, LBP, and tree-reweighted message passing in addition to the well-known older iterated conditional modes (ICM) algorithm. Our benchmark problems are drawn from published energy functions used for stereo, image stitching, interactive segmentation, and denoising. We also provide a general-purpose software interface that allows vision researchers to easily switch between optimization methods. Benchmarks, code, images, and results are available at http://vision.middlebury.edu/MRF/.  相似文献   

6.
What energy functions can be minimized via graph cuts?   总被引:23,自引:0,他引:23  
In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are complex and highly specific to a particular energy function, graph cuts have seen limited application to date. In this paper, we give a characterization of the energy functions that can be minimized by graph cuts. Our results are restricted to functions of binary variables. However, our work generalizes many previous constructions and is easily applicable to vision problems that involve large numbers of labels, such as stereo, motion, image restoration, and scene reconstruction. We give a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions that can be written as a sum of terms containing three or fewer binary variables. We also provide a general-purpose construction to minimize such an energy function. Finally, we give a necessary condition for any energy function of binary variables to be minimized by graph cuts. Researchers who are considering the use of graph cuts to optimize a particular energy function can use our results to determine if this is possible and then follow our construction to create the appropriate graph. A software implementation is freely available.  相似文献   

7.
Automatic decomposition of intrinsic images, especially for complex real‐world images, is a challenging under‐constrained problem. Thus, we propose a new algorithm that generates and combines multi‐scale properties of chromaticity differences and intensity contrast. The key observation is that the estimation of image reflectance, which is neither a pixel‐based nor a region‐based property, can be improved by using multi‐scale measurements of image content. The new algorithm iteratively coarsens a graph reflecting the reflectance similarity between neighbouring pixels. Then multi‐scale reflectance properties are aggregated so that the graph reflects the reflectance property at different scales. This is followed by a L0 sparse regularization on the whole reflectance image, which enforces the variation in reflectance images to be high‐frequency and sparse. We formulate this problem through energy minimization which can be solved efficiently within a few iterations. The effectiveness of the new algorithm is tested with the Massachusetts Institute of Technology (MIT) dataset, the Intrinsic Images in the Wild (IIW) dataset, and various natural images.  相似文献   

8.
基于图割的图像分割方法及其新进展   总被引:14,自引:0,他引:14  
鉴于图割的理论意义和实际应用价值,系统综述了基于图割的图像分割方法. 首先,深入分析了基于图割的图像分割方法的基本原理,主要从定性和定量角度剖析了图割与能量函数最小化之间的关系, 然后,概括了基于图割的图像分割方法的基本步骤,包括能量函数的设计、图的构造和最小割/最大流方法, 其次,系统梳理和评述了基于图割的图像分割方法的国内外研究现状,最后,指出了基于图割的图像分割方法的发展方向.  相似文献   

9.
This paper presents a digital storytelling approach that generates automatic animations for time‐varying data visualization. Our approach simulates the composition and transition of storytelling techniques and synthesizes animations to describe various event features. Specifically, we analyze information related to a given event and abstract it as an event graph, which represents data features as nodes and event relationships as links. This graph embeds a tree‐like hierarchical structure which encodes data features at different scales. Next, narrative structures are built by exploring starting nodes and suitable search strategies in this graph. Different stages of narrative structures are considered in our automatic rendering parameter decision process to generate animations as digital stories. We integrate this animation generation approach into an interactive exploration process of time‐varying data, so that more comprehensive information can be provided in a timely fashion. We demonstrate with a storm surge application that our approach allows semantic visualization of time‐varying data and easy animation generation for users without special knowledge about the underlying visualization techniques.  相似文献   

10.
Graph cuts have become an increasingly important tool for solving a number of energy minimization problems in computer vision and other fields. In this paper, the graph cut problem is reformulated as an unconstrained $\ell_1$ norm minimization which can be solved effectively using interior point methods. This reformulation exposes connections between the graph cuts and other related continuous optimization problems. Eventually the problem is reduced to solving a sequence of sparse linear systems involving the Laplacian of the underlying graph. The proposed procedure exploits the structure of these linear systems in a manner that is easily amenable to parallel implementations. Experimental results obtained by applying the procedure to graphs derived from image processing problems are provided.  相似文献   

11.
文章在图割理论的基础上,引入了一种新的方法将图割理论和改进的变分水平集模型结合起来,先利用图割理论对目标形成一个初始轮廓,并在得到的轮廓线上定义能量函数,通过能量函数的最小化,从而使得到的轮廓线最终收敛到目标边界,这样在保证分割精度的同时大大简化了计算量.  相似文献   

12.
We introduce a fully automatic algorithm which optimizes the high‐level structure of a given quadrilateral mesh to achieve a coarser quadrangular base complex. Such a topological optimization is highly desirable, since state‐of‐the‐art quadrangulation techniques lead to meshes which have an appropriate singularity distribution and an anisotropic element alignment, but usually they are still far away from the high‐level structure which is typical for carefully designed meshes manually created by specialists and used e.g. in animation or simulation. In this paper we show that the quality of the high‐level structure is negatively affected by helical configurations within the quadrilateral mesh. Consequently we present an algorithm which detects helices and is able to remove most of them by applying a novel grid preserving simplification operator (GP‐operator) which is guaranteed to maintain an all‐quadrilateral mesh. Additionally it preserves the given singularity distribution and in particular does not introduce new singularities. For each helix we construct a directed graph in which cycles through the start vertex encode operations to remove the corresponding helix. Therefore a simple graph search algorithm can be performed iteratively to remove as many helices as possible and thus improve the high‐level structure in a greedy fashion. We demonstrate the usefulness of our automatic structure optimization technique by showing several examples with varying complexity.  相似文献   

13.
We present ‘Smart Scribbles’—a new scribble‐based interface for user‐guided segmentation of digital sketchy drawings. In contrast to previous approaches based on simple selection strategies, Smart Scribbles exploits richer geometric and temporal information, resulting in a more intuitive segmentation interface. We introduce a novel energy minimization formulation in which both geometric and temporal information from digital input devices is used to define stroke‐to‐stroke and scribble‐to‐stroke relationships. Although the minimization of this energy is, in general, an NP‐hard problem, we use a simple heuristic that leads to a good approximation and permits an interactive system able to produce accurate labellings even for cluttered sketchy drawings. We demonstrate the power of our technique in several practical scenarios such as sketch editing, as‐rigid‐as‐possible deformation and registration, and on‐the‐fly labelling based on pre‐classified guidelines.  相似文献   

14.
Going beyond established desktop interfaces, researchers have begun re‐thinking visualization approaches to make use of alternative display environments and more natural interaction modalities. In this paper, we investigate how spatially‐aware mobile displays and a large display wall can be coupled to support graph visualization and interaction. For that purpose, we distribute typical visualization views of classic node‐link and matrix representations between displays. The focus of our work lies in novel interaction techniques that enable users to work with personal mobile devices in combination with the wall. We devised and implemented a comprehensive interaction repertoire that supports basic and advanced graph exploration and manipulation tasks, including selection, details‐on‐demand, focus transitions, interactive lenses, and data editing. A qualitative study has been conducted to identify strengths and weaknesses of our techniques. Feedback showed that combining mobile devices and a wall‐sized display is useful for diverse graph‐related tasks. We also gained valuable insights regarding the distribution of visualization views and interactive tools among the combined displays.  相似文献   

15.
The craniofacial reconstruction is employed as an initialization of the identification from skulls in forensics. In this paper, we present a two‐level craniofacial reconstruction framework based on the local structural diversity of the skulls. On the low level, the holistic reconstruction is formulated as the superimposition of the selected tissue map on the novel skull. The crux is the accurate map registration, which is implemented as a warping guided by the 2D feature curve patterns. The curve pattern extraction under an energy minimization framework is proposed for the automatic feature labeling on the skull depth map. The feature configuration on the warped tissue map is expected to resemble that on the novel skull. In order to make the reconstructed faces personalized, on the high level, the local facial features are estimated from the skull measurements via a RBF model. The RBF model is learnt from a dataset of the skull and the face feature pairs extracted from the head volume data. The experiments demonstrate the facial outlooks can be reconstructed feasibly and efficiently.  相似文献   

16.
We present a novel method for flexible and efficient simulation of example‐based elastic deformation. The geometry of all input shapes is projected into a common shape space spanned by the Laplace–Beltrami eigenfunctions. The eigenfunctions are coupled to be compatible across shapes. Shape representation in the common shape space is scale‐invariant and topology‐independent. The limitation of previous example‐based approaches is circumvented that all examples must have identical topology with the simulated object. Additionally, our method allows examples that are arbitrary in size, similar but not identical in shape with the object. We interpolate the examples via a weighted‐energy minimization to find the target configuration that guides the object to desired deformation. Large deformation between examples is handled by a physically plausible energy metric. This optimization is efficient as the eigenfunctions are pre‐computed and the problem dimension is small. We demonstrate the benefits of our approach with animation results and performance analysis.  相似文献   

17.
We present a second order smooth filling of an n‐valent Catmull‐Clark spline ring with n biseptic patches. While an underdetermined biseptic solution to this problem has appeared previously, we make several advances in this paper. Most notably, we cast the problem as a constrained minimization and introduce a novel quadratic energy functional whose absolute minimum of zero is achieved for bicubic polynomials. This means that for the regular 4‐valent case, we reproduce the bicubic B‐splines. In other cases, the resulting surfaces are aesthetically well behaved. We extend our constrained minimization framework to handle the case of input mesh with boundary.  相似文献   

18.
Studying transformation in a chemical system by considering its energy as a function of coordinates of the system's components provides insight and changes our understanding of this process. Currently, a lack of effective visualization techniques for high‐dimensional energy functions limits chemists to plot energy with respect to one or two coordinates at a time. In some complex systems, developing a comprehensive understanding requires new visualization techniques that show relationships between all coordinates at the same time. We propose a new visualization technique that combines concepts from topological analysis, multi‐dimensional scaling, and graph layout to enable the analysis of energy functions for a wide range of molecular structures. We demonstrate our technique by studying the energy function of a dimer of formic and acetic acids and a LTA zeolite structure, in which we consider diffusion of methane.  相似文献   

19.
In this paper, we investigate the applicability of graph cuts to the SFS (shape-from-shading) problem. We propose a new semi-global method for SFS using graph cuts. The new algorithm combines the local method proposed by Lee and Rosenfeld [C.H. Lee, A. Rosenfeld, Improved methods of estimating shape from shading using the light source coordinate system, Artif. Intell. 26 (1985) 125-143] and a global method using an energy minimization technique. By employing a new global energy minimization formulation, the convex/concave ambiguity problem of Lee and Rosenfeld's method can be resolved efficiently. A new combinatorial optimization technique, the graph cuts method, is used for the minimization of the proposed energy functional. Experimental results on a variety of synthetic and real-world images show that the proposed algorithm reconstructs the 3-D shape of objects very efficiently.  相似文献   

20.
从图割的特性与图像的对应性以及图割的能量最小化方面,综述了图割的基本理论框架及基于图割进行图像分割的基本框架;介绍了图割的研究现状及应用领域;指出了基于图割的解题步骤及能量函数的构造方法,从图割存在的问题和研究前景出发,展望了图割未来的研究方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号