首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Light fields were introduced a decade ago as a new high‐dimensional graphics rendering model. However, they have not been thoroughly used because their applications are very specific and their storage requirements are too high. Recently, spatial imaging devices have been related to light fields. These devices allow several users to see three‐dimensional (3D) images without using glasses or other intrusive elements. This paper presents a light‐field model that can be rendered in an autostereoscopic spatial device. The model is viewpoint‐independent and supports continuous multiresolution, foveal rendering, and integrating multiple light fields and geometric models in the same scene. We also show that it is possible to examine interactively a scene composed of several light fields and geometric models. Visibility is taken care of by the algorithm. Our goal is to apply our models to 3D TV and spatial imaging.  相似文献   

2.
In current practice, broccoli heads are selectively harvested by hand. The goal of our work is to develop a robot that can selectively harvest broccoli heads, thereby reducing labor costs. An essential element of such a robot is an image‐processing algorithm that can detect broccoli heads. In this study, we developed a deep learning algorithm for this purpose, using the Mask Region‐based Convolutional Neural Network. To be applied on a robot, the algorithm must detect broccoli heads from any cultivar, meaning that it can generalize on the broccoli images. We hypothesized that our algorithm can be generalized through network simplification and data augmentation. We found that network simplification decreased the generalization performance, whereas data augmentation increased the generalization performance. In data augmentation, the geometric transformations (rotation, cropping, and scaling) led to a better image generalization than the photometric transformations (light, color, and texture). Furthermore, the algorithm was generalized on a broccoli cultivar when 5% of the training images were images of that cultivar. Our algorithm detected 229 of the 232 harvestable broccoli heads from three cultivars. We also tested our algorithm on an online broccoli data set, which our algorithm was not previously trained on. On this data set, our algorithm detected 175 of the 176 harvestable broccoli heads, proving that the algorithm was successfully generalized. Finally, we performed a cost‐benefit analysis for a robot equipped with our algorithm. We concluded that the robot was more profitable than the human harvest and that our algorithm provided a sufficient basis for robot commercialization.  相似文献   

3.
We present a novel use of commodity graphics hardware that effectively combines a plane‐sweeping algorithm with view synthesis for real‐time, online 3D scene acquisition and view synthesis. Using real‐time imagery from a few calibrated cameras, our method can generate new images from nearby viewpoints, estimate a dense depth map from the current viewpoint, or create a textured triangular mesh. We can do each of these without any prior geometric information or requiring any user interaction, in real time and online. The heart of our method is to use programmable Pixel Shader technology to square intensity differences between reference image pixels, and then to choose final colors (or depths) that correspond to the minimum difference, i.e. the most consistent color. In this paper we describe the method, place it in the context of related work in computer graphics and computer vision, and present some results. ACM CSS: I.3.3 Computer Graphics—Bitmap and framebuffer operations, I.4.8 Image Processing and Computer Vision—Depth cues, Stereo  相似文献   

4.
We present a design technique for colors with the purpose of lowering the energy consumption of the display device. Our approach is based on a screen space variant energy model. The result of our design is a set of distinguishable iso-lightness colors guided by perceptual principles. We present two variations of our approach. One is based on a set of discrete user-named (categorical) colors, which are analyzed according to their energy consumption. The second is based on the constrained continuous optimization of color energy in the perceptually uniform CIELAB color space. We quantitatively compare our two approaches with a traditional choice of colors, demonstrating that we typically save approximately 40 percent of the energy. The color sets are applied to examples from the 2D visualization of nominal data and volume rendering of 3D scalar fields.  相似文献   

5.
Abstract— The jerkiness of moving three‐dimensional (3‐D) images produced by a high‐density directional display was studied. Under static viewing conditions in which subjects' heads did not move, jerkiness was more noticeable when moving 3‐D images were displayed in front of the display screen and was less noticeable when moving 3‐D images were displayed behind the screen. We found that the perception of jerkiness depended on the visual angular velocities of moving 3‐D images. Under dynamic viewing conditions in which subjects' heads were forced to move, when moving 3‐D images were displayed in front of the screen, jerkiness was less noticeable when the subjects' heads and 3‐D images moved in opposite directions and was more noticeable when they moved in the same direction. When moving 3‐D images were displayed behind the screen, jerkiness was less noticeable when subjects' heads and 3‐D images moved in the same direction and was more noticeable when they moved in opposite directions.  相似文献   

6.
Videos captured by consumer cameras often exhibit temporal variations in color and tone that are caused by camera auto‐adjustments like white‐balance and exposure. When such videos are sub‐sampled to play fast‐forward, as in the increasingly popular forms of timelapse and hyperlapse videos, these temporal variations are exacerbated and appear as visually disturbing high frequency flickering. Previous techniques to photometrically stabilize videos typically rely on computing dense correspondences between video frames, and use these correspondences to remove all color changes in the video sequences. However, this approach is limited in fast‐forward videos that often have large content changes and also might exhibit changes in scene illumination that should be preserved. In this work, we propose a novel photometric stabilization algorithm for fast‐forward videos that is robust to large content‐variation across frames. We compute pairwise color and tone transformations between neighboring frames and smooth these pair‐wise transformations while taking in account the possibility of scene/content variations. This allows us to eliminate high‐frequency fluctuations, while still adapting to real variations in scene characteristics. We evaluate our technique on a new dataset consisting of controlled synthetic and real videos, and demonstrate that our techniques outperforms the state‐of‐the‐art.  相似文献   

7.
Fused Filament Fabrication is an additive manufacturing process by which a 3D object is created from plastic filament. The filament is pushed through a hot nozzle where it melts. The nozzle deposits plastic layer after layer to create the final object. This process has been popularized by the RepRap community. Several printers feature multiple extruders, allowing objects to be formed from multiple materials or colors. The extruders are mounted side by side on the printer carriage. However, the print quality suffers when objects with color patterns are printed – a disappointment for designers interested in 3D printing their colored digital models. The most severe issue is the oozing of plastic from the idle extruders: Plastics of different colors bleed onto each other giving the surface a smudged aspect, excess strings oozing from the extruder deposit on the surface, and holes appear due to this missing plastic. Fixing this issue is difficult: increasing the printing speed reduces oozing but also degrades surface quality – on large prints the required speed level become impractical. Adding a physical mechanism increases cost and print time as extruders travel to a cleaning station. Instead, we rely on software and exploit degrees of freedom of the printing process. We introduce three techniques that complement each other in improving the print quality significantly. We first reduce the impact of oozing plastic by choosing a better azimuth angle for the printed part. We build a disposable rampart in close proximity of the part, giving the extruders the opportunity to wipe oozing strings and refill with hot plastic. We finally introduce a toolpath planner avoiding and hiding most of the defects due to oozing, and seamlessly integrating the rampart. We demonstrate our technique on several challenging multiple color prints, and show that our tool path planner improves the surface finish of single color prints as well.  相似文献   

8.
Sharp edges are important shape features and their extraction has been extensively studied both on point clouds and surfaces. We consider the problem of extracting sharp edges from a sparse set of colour‐and‐depth (RGB‐D) images. The noise‐ridden depth measurements are challenging for existing feature extraction methods that work solely in the geometric domain (e.g. points or meshes). By utilizing both colour and depth information, we propose a novel feature extraction method that produces much cleaner and more coherent feature lines. We make two technical contributions. First, we show that intensity edges can augment the depth map to improve normal estimation and feature localization from a single RGB‐D image. Second, we designed a novel algorithm for consolidating feature points obtained from multiple RGB‐D images. By utilizing normals and ridge/valley types associated with the feature points, our algorithm is effective in suppressing noise without smearing nearby features.  相似文献   

9.
Abstract— Previous research has shown that the size of the LDL macromolecules can have an effect on cardiovascular health and that LDL macromolecules may be non‐spherical in shape. Some of these studies, however, used methods that are not conducive to automatic determination of the 3‐D parameters of the particles. In particular, the prior methods used for determination of geometric‐parameter determination were either centrifugal separations or manual determination of parameters from cryogenic transmission electron micrographs. An application of computer‐vision techniques to automatically determine the 3‐D parameters from cryogenic transmission electron microscopy (CTEM) images will be described. Correlation of computer‐generated geometric models to the orthonormal projection CTEM imagery were investigated to determine the applicability of finding the pertinent geometric parameters of the expected discoid shape of the LDL particles. The processing showed that the discoid shape can be verified using small‐angle rotations that are more amenable to the limitations of CTEM imaging.  相似文献   

10.
We present a novel approach to parameterize a mesh with disk topology to the plane in a shape‐preserving manner. Our key contribution is a local/global algorithm, which combines a local mapping of each 3D triangle to the plane, using transformations taken from a restricted set, with a global “stitch” operation of all triangles, involving a sparse linear system. The local transformations can be taken from a variety of families, e.g. similarities or rotations, generating different types of parameterizations. In the first case, the parameterization tries to force each 2D triangle to be an as‐similar‐as‐possible version of its 3D counterpart. This is shown to yield results identical to those of the LSCM algorithm. In the second case, the parameterization tries to force each 2D triangle to be an as‐rigid‐as‐possible version of its 3D counterpart. This approach preserves shape as much as possible. It is simple, effective, and fast, due to pre‐factoring of the linear system involved in the global phase. Experimental results show that our approach provides almost isometric parameterizations and obtains more shape‐preserving results than other state‐of‐the‐art approaches. We present also a more general “hybrid” parameterization model which provides a continuous spectrum of possibilities, controlled by a single parameter. The two cases described above lie at the two ends of the spectrum. We generalize our local/global algorithm to compute these parameterizations. The local phase may also be accelerated by parallelizing the independent computations per triangle.  相似文献   

11.
The comparison of molecular surface attributes is of interest for computer aided drug design and the analysis of biochemical simulations. Due to the non‐rigid nature of molecular surfaces, partial shape matching is feasible for mapping two surfaces onto each other. We present a novel technique to obtain a mapping relation between two surfaces using a deformable model approach. This relation is used for pair‐wise comparison of local surface attributes (e.g. electrostatic potential). We combine the difference value as well as the comparability as derived from the local matching quality in a 3D molecular visualization by mapping them to color. A 2D matrix shows the global dissimilarity in an overview of different data sets in an ensemble. We apply our visualizations to simulation results provided by collaborators from the field of biochemistry to evaluate the effectiveness of our results.  相似文献   

12.
We propose a novel framework to generate a global texture atlas for a deforming geometry. Our approach distinguishes from prior arts in two aspects. First, instead of generating a texture map for each timestamp to color a dynamic scene, our framework reconstructs a global texture atlas that can be consistently mapped to a deforming object. Second, our approach is based on a single RGB‐D camera, without the need of a multiple‐camera setup surrounding a scene. In our framework, the input is a 3D template model with an RGB‐D image sequence, and geometric warping fields are found using a state‐of‐the‐art non‐rigid registration method [GXW*15] to align the template mesh to noisy and incomplete input depth images. With these warping fields, our multi‐scale approach for texture coordinate optimization generates a sharp and clear texture atlas that is consistent with multiple color observations over time. Our approach is accelerated by graphical hardware and provides a handy configuration to capture a dynamic geometry along with a clean texture atlas. We demonstrate our approach with practical scenarios, particularly human performance capture. We also show that our approach is resilient on misalignment issues caused by imperfect estimation of warping fields and inaccurate camera parameters.  相似文献   

13.
14.
Eleven tone‐mapping operators intended for video processing are analyzed and evaluated with camera‐captured and computer‐generated high‐dynamic‐range content. After optimizing the parameters of the operators in a formal experiment, we inspect and rate the artifacts (flickering, ghosting, temporal color consistency) and color rendition problems (brightness, contrast and color saturation) they produce. This allows us to identify major problems and challenges that video tone‐mapping needs to address. Then, we compare the tone‐mapping results in a pair‐wise comparison experiment to identify the operators that, on average, can be expected to perform better than the others and to assess the magnitude of differences between the best performing operators.  相似文献   

15.
We present a new, high‐quality compositing pipeline and navigation approach for variable resolution imagery. The motivation of this work is to explore the use of variable resolution images as a quick and accessible alternative to traditional gigapixel mosaics. Instead of the common tedious acquisition of many images using specialized hardware, variable resolution images can achieve similarly deep zooms as large mosaics, but with only a handful of images. For this approach to be a viable alternative, the state‐of‐the‐art in variable resolution compositing needs to be improved to match the high‐quality approaches commonly used in mosaic compositing. To this end, we provide a novel, variable resolution mosaic seam calculation and gradient domain color correction. This approach includes a new priority order graph cuts computation along with a practical data structure to keep memory overhead low. In addition, navigating variable resolution images is challenging, especially at the zoom factors targeted in this work. To address this challenge, we introduce a new image interaction for variable resolution imagery: a pan that automatically, and smoothly, hugs available resolution. Finally, we provide several real‐world examples of our approach producing high‐quality variable resolution mosaics with deep zooms typically associated with gigapixel photography.  相似文献   

16.
Smoothness is a quality that feels aesthetic and pleasing to the human eye. We present an algorithm for finding “as‐smooth‐as‐possible” sequences in image collections. In contrast to previous work, our method does not assume that the images show a common 3D scene, but instead may depict different object instances with varying deformations, and significant variation in lighting, texture, and color appearance. Our algorithm does not rely on a notion of camera pose, view direction, or 3D representation of an underlying scene, but instead directly optimizes the smoothness of the apparent motion of local point matches among the collection images. We increase the smoothness of our sequences by performing a global similarity transform alignment, as well as localized geometric wobble reduction and appearance stabilization. Our technique gives rise to a new kind of image morphing algorithm, in which the in‐between motion is derived in a data‐driven manner from a smooth sequence of real images without any user intervention. This new type of morph can go far beyond the ability of traditional techniques. We also demonstrate that our smooth sequences allow exploring large image collections in a stable manner.  相似文献   

17.
This paper proposes a new approach for color transfer between two images. Our method is unique in its consideration of the scene illumination and the constraint that the mapped image must be within the color gamut of the target image. Specifically, our approach first performs a white‐balance step on both images to remove color casts caused by different illuminations in the source and target image. We then align each image to share the same ‘white axis’ and perform a gradient preserving histogram matching technique along this axis to match the tone distribution between the two images. We show that this illuminant‐aware strategy gives a better result than directly working with the original source and target image's luminance channel as done by many previous methods. Afterwards, our method performs a full gamut‐based mapping technique rather than processing each channel separately. This guarantees that the colors of our transferred image lie within the target gamut. Our experimental results show that this combined illuminant‐aware and gamut‐based strategy produces more compelling results than previous methods. We detail our approach and demonstrate its effectiveness on a number of examples.  相似文献   

18.
Although several new tone‐mapping operators are proposed each year, there is no reliable method to validate their performance or to tell how different they are from one another. In order to analyze and understand the behavior of tone‐mapping operators, we model their mechanisms by fitting a generic operator to an HDR image and its tone‐mapped LDR rendering. We demonstrate that the majority of both global and local tone‐mapping operators can be well approximated by computationally inexpensive image processing operations, such as a per‐pixel tone curve, a modulation transfer function and color saturation adjustment. The results produced by such a generic tone‐mapping algorithm are often visually indistinguishable from much more expensive algorithms, such as the bilateral filter. We show the usefulness of our generic tone‐mapper in backward‐compatible HDR image compression, the black‐box analysis of existing tone mapping algorithms and the synthesis of new algorithms that are combination of existing operators.  相似文献   

19.
A model to rate color combinations that considers human aesthetic preferences is proposed. The proposed method does not assume that a color palette has a specific number of colors, i.e., input is not restricted to a two‐, three‐, or five‐color palettes. We extract features from a color palette whose size does not depend on the number of colors in the palette. The proposed rating prediction model is trained using a human color preference dataset. The model allows a user to extend a color palette, e.g., from three colors to five or seven colors, while retaining color harmony. In addition, we present a color search scheme for a given palette and a customized version of the proposed model for a specific color tone. We demonstrate that the proposed model can also be applied to various palette‐based applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号