共查询到20条相似文献,搜索用时 15 毫秒
1.
Gradient‐domain compositing has been widely used to create a seamless composite with gradient close to a composite gradient field generated from one or more registered images. The key to this problem is to solve a Poisson equation, whose unknown variables can reach the size of the composite if no region of interest is drawn explicitly, thus making both the time and memory cost expensive in processing multi‐megapixel images. In this paper, we propose an approximate projection method based on biorthogonal Multiresolution Analyses (MRA) to solve the Poisson equation. Unlike previous Poisson equation solvers which try to converge to the accurate solution with iterative algorithms, we use biorthogonal compactly supported curl‐free wavelets as the fundamental bases to approximately project the composite gradient field onto a curl‐free vector space. Then, the composite can be efficiently recovered by applying a fast inverse wavelet transform. Considering an n‐pixel composite, our method only requires 2n of memory for all vector fields and is more efficient than state‐of‐the‐art methods while achieving almost identical results. Specifically, experiments show that our method gains a 5× speedup over the streaming multigrid in certain cases. 相似文献
2.
3.
Markus Steinberger Michael Kenzel Bernhard Kainz Peter Wonka Dieter Schmalstieg 《Computer Graphics Forum》2014,33(2):105-114
In this paper, we present a new approach for shape‐grammar‐based generation and rendering of huge cities in real‐time on the graphics processing unit (GPU). Traditional approaches rely on evaluating a shape grammar and storing the geometry produced as a preprocessing step. During rendering, the pregenerated data is then streamed to the GPU. By interweaving generation and rendering, we overcome the problems and limitations of streaming pregenerated data. Using our methods of visibility pruning and adaptive level of detail, we are able to dynamically generate only the geometry needed to render the current view in real‐time directly on the GPU. We also present a robust and efficient way to dynamically update a scene's derivation tree and geometry, enabling us to exploit frame‐to‐frame coherence. Our combined generation and rendering is significantly faster than all previous work. For detailed scenes, we are capable of generating geometry more rapidly than even just copying pregenerated data from main memory, enabling us to render cities with thousands of buildings at up to 100 frames per second, even with the camera moving at supersonic speed. 相似文献
4.
Marcel Campen Moritz Ibing Hans‐Christian Ebke Denis Zorin Leif Kobbelt 《Computer Graphics Forum》2016,35(5):1-10
Various applications of global surface parametrization benefit from the alignment of parametrization isolines with principal curvature directions. This is particularly true for recent parametrization‐based meshing approaches, where this directly translates into a shape‐aware edge flow, better approximation quality, and reduced meshing artifacts. Existing methods to influence a parametrization based on principal curvature directions suffer from scale‐dependence, which implies the necessity of parameter variation, or try to capture complex directional shape features using simple 1D curves. Especially for non‐sharp features, such as chamfers, fillets, blends, and even more for organic variants thereof, these abstractions can be unfit. We present a novel approach which respects and exploits the 2D nature of such directional feature regions, detects them based on coherence and homogeneity properties, and controls the parametrization process accordingly. This approach enables us to provide an intuitive, scale‐invariant control parameter to the user. It also allows us to consider non‐local aspects like the topology of a feature, enabling further improvements. We demonstrate that, compared to previous approaches, global parametrizations of higher quality can be generated without user intervention. 相似文献
5.
Real‐time Texture Synthesis and Concurrent Random‐access Rendering for Low‐cost GPU Chip Design 下载免费PDF全文
Numerous algorithms have been researched in the area of texture synthesis. However, it remains difficult to design a low‐cost synthesis scheme capable of generating high quality results while simultaneously achieving real‐time performance. Additional challenges include making a scheme parallel and being able to partially render/synthesize high‐resolution textures. Furthermore, it would be beneficial for a synthesis scheme to be able to incorporate Texture Compression and minimize the bandwidth usage, especially on mobile devices. In this paper, we propose a practical method which has low computational complexity and produces textures with small storage requirements. Through use of an index table, random access of the texture is another essential advantage, with which parallel rendering becomes feasible including generation of mip‐map sequences. Integrating the index table with existing compression algorithms, for example ETC or PVRTC, the bandwidth is further reduced and avoids the need for a separate, computationally expensive pass to compress the synthesized output. It should be noted that our texture synthesis achieves real‐time performance and low power consumption even on mobile devices, for which texture synthesis has been traditionally considered too expensive. 相似文献
6.
7.
We present a data‐driven method for synthesizing 3D indoor scenes by inserting objects progressively into an initial, possibly, empty scene. Instead of relying on few hundreds of hand‐crafted 3D scenes, we take advantage of existing large‐scale annotated RGB‐D datasets, in particular, the SUN RGB‐D database consisting of 10,000+ depth images of real scenes, to form the prior knowledge for our synthesis task. Our object insertion scheme follows a co‐occurrence model and an arrangement model, both learned from the SUN dataset. The former elects a highly probable combination of object categories along with the number of instances per category while a plausible placement is defined by the latter model. Compared to previous works on probabilistic learning for object placement, we make two contributions. First, we learn various classes of higher‐order object‐object relations including symmetry, distinct orientation, and proximity from the database. These relations effectively enable considering objects in semantically formed groups rather than by individuals. Second, while our algorithm inserts objects one at a time, it attains holistic plausibility of the whole current scene while offering controllability through progressive synthesis. We conducted several user studies to compare our scene synthesis performance to results obtained by manual synthesis, state‐of‐the‐art object placement schemes, and variations of parameter settings for the arrangement model. 相似文献
8.
This paper aims at rendering interactive visual effects inherent to complex interactions between trees and rain in real‐time in order to increase the realism of natural rainy scenes. Such a complex phenomenon involves a great number of physical processes influenced by various interlinked factors and its rendering represents a thorough challenge in Computer Graphics. We approach this problem by introducing an original method to render drops dripping from leaves after interception of raindrops by foliage. Our method introduces a new hydrological model representing interactions between rain and foliage through a phenomenological approach. Our model reduces the complexity of the phenomenon by representing multiple dripping drops with a new fully functional form evaluated per‐pixel on‐the‐fly and providing improved control over density and physical properties. Furthermore, an efficient real‐time rendering scheme, taking full advantage of latest GPU hardware capabilities, allows the rendering of a large number of dripping drops even for complex scenes. 相似文献
9.
In this paper, we present a flexible and efficient approach for the integration of order‐independent transparency into a deferred shading pipeline. The intermediate buffers for storing fragments to be shaded are extended with a dynamic and memory‐efficient storage for transparent fragments. The transparency of an object is not fixed and remains programmable until fragment processing, which allows for the implementation of advanced materials effects, interaction techniques or adaptive fade‐outs. Traversing costs for shading the transparent fragments are greatly reduced by introducing a tile‐based light‐culling pass. During deferred shading, opaque and transparent fragments are shaded and composited in front‐to‐back order using the retrieved lighting information and a physically‐based shading model. In addition, we discuss various configurations of the system and further enhancements. Our results show that the system performs at interactive frame rates even for complex scenarios. 相似文献
10.
Fernando de Goes Beibei Liu Max Budninskiy Yiying Tong Mathieu Desbrun 《Computer Graphics Forum》2014,33(5):13-24
Geometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric tensors (i.e., forms) on triangulations. Symmetric 2‐tensors, while crucial in the definition of inner products and elliptic operators, have received only limited attention. They are often discretized by first defining a coordinate system per vertex, edge or face, then storing their components in this frame field. In this paper, we introduce a representation of arbitrary 2‐tensor fields on triangle meshes. We leverage a coordinate‐free decomposition of continuous 2‐tensors in the plane to construct a finite‐dimensional encoding of tensor fields through scalar values on oriented simplices of a manifold triangulation. We also provide closed‐form expressions of pairing, inner product, and trace for this discrete representation of tensor fields, and formulate a discrete covariant derivative and a discrete Lie bracket. Our approach extends discrete/finite‐element exterior calculus, recovers familiar operators such as the weighted Laplacian operator, and defines discrete notions of divergence‐free, curl‐free, and traceless tensors–thus offering a numerical framework for discrete tensor calculus on triangulations. We finally demonstrate the robustness and accuracy of our operators on analytical examples, before applying them to the computation of anisotropic geodesic distances on discrete surfaces. 相似文献
11.
To design a bas‐relief from a 3D scene is an inherently interactive task in many scenarios. The user normally needs to get instant feedback to select a proper viewpoint. However, current methods are too slow to facilitate this interaction. This paper proposes a two‐scale bas‐relief modeling method, which is computationally efficient and easy to produce different styles of bas‐reliefs. The input 3D scene is first rendered into two textures, one recording the depth information and the other recording the normal information. The depth map is then compressed to produce a base surface with level‐of‐depth, and the normal map is used to extract local details with two different schemes. One scheme provides certain freedom to design bas‐reliefs with different visual appearances, and the other provides a control over the level of detail. Finally, the local feature details are added into the base surface to produce the final result. Our approach allows for real‐time computation due to its implementation on graphics hardware. Experiments with a wide range of 3D models and scenes show that our approach can effectively generate digital bas‐reliefs in real time. 相似文献
12.
Splines are part of the standard toolbox for the approximation of functions and curves in ?d. Still, the problem of finding the spline that best approximates an input function or curve is ill‐posed, since in general this yields a “spline” with an infinite number of segments. The problem can be regularized by adding a penalty term for the number of spline segments. We show how this idea can be formulated as an ?0‐regularized quadratic problem. This gives us a notion of optimal approximating splines that depend on one parameter, which weights the approximation error against the number of segments. We detail this concept for different types of splines including B‐splines and composite Bézier curves. Based on the latest development in the field of sparse approximation, we devise a solver for the resulting minimization problems and show applications to spline approximation of planar and space curves and to spline conversion of motion capture data. 相似文献
13.
O. Litany E. Rodolà A. M. Bronstein M. M. Bronstein D. Cremers 《Computer Graphics Forum》2016,35(5):135-143
Shape correspondence is a fundamental problem in computer graphics and vision, with applications in various problems including animation, texture mapping, robotic vision, medical imaging, archaeology and many more. In settings where the shapes are allowed to undergo non‐rigid deformations and only partial views are available, the problem becomes very challenging. To this end, we present a non‐rigid multi‐part shape matching algorithm. We assume to be given a reference shape and its multiple parts undergoing a non‐rigid deformation. Each of these query parts can be additionally contaminated by clutter, may overlap with other parts, and there might be missing parts or redundant ones. Our method simultaneously solves for the segmentation of the reference model, and for a dense correspondence to (subsets of) the parts. Experimental results on synthetic as well as real scans demonstrate the effectiveness of our method in dealing with this challenging matching scenario. 相似文献
14.
Thomas Lindemeier Jens Metzner Lena Pollak Oliver Deussen 《Computer Graphics Forum》2015,34(2):311-323
We describe a painting machine and associated algorithms. Our modified industrial robot works with visual feedback and applies acrylic paint from a repository to a canvas until the created painting resembles a given input image or scene. The color differences between canvas and input are used to direct the application of new strokes. We present two optimization‐based algorithms that place such strokes in relation to already existing ones. Using these methods we are able to create different painting styles, one that tries to match the input colors with almost transparent strokes and another one that creates dithering patterns of opaque strokes that approximate the input color. The machine produces paintings that mimic those created by human painters and allows us to study the painting process as well as the creation of artworks. 相似文献
15.
We present a novel algorithm to reconstruct high‐quality images from sampled pixels and gradients in gradient‐domain Rendering. Our approach extends screened Poisson reconstruction by adding additional regularization constraints. Our key idea is to exploit local patches in feature images, which contain per‐pixels normals, textures, position, etc., to formulate these constraints. We describe a GPU implementation of our approach that runs on the order of seconds on megapixel images. We demonstrate a significant improvement in image quality over screened Poisson reconstruction under the L1 norm. Because we adapt the regularization constraints to the noise level in the input, our algorithm is consistent and converges to the ground truth. 相似文献
16.
17.
Zhige Xie Kai Xu Wen Shan Ligang Liu Yueshan Xiong Hui Huang 《Computer Graphics Forum》2015,34(7):1-11
Feature learning for 3D shapes is challenging due to the lack of natural paramterization for 3D surface models. We adopt the multi‐view depth image representation and propose Multi‐View Deep Extreme Learning Machine (MVD‐ELM) to achieve fast and quality projective feature learning for 3D shapes. In contrast to existing multi‐view learning approaches, our method ensures the feature maps learned for different views are mutually dependent via shared weights and in each layer, their unprojections together form a valid 3D reconstruction of the input 3D shape through using normalized convolution kernels. These lead to a more accurate 3D feature learning as shown by the encouraging results in several applications. Moreover, the 3D reconstruction property enables clear visualization of the learned features, which further demonstrates the meaningfulness of our feature learning. 相似文献
18.
Modeling and Exploring Co‐variations in the Geometry and Configuration of Man‐made 3D Shape Families 下载免费PDF全文
We introduce co‐variation analysis as a tool for modeling the way part geometries and configurations co‐vary across a family of man‐made 3D shapes. While man‐made 3D objects exhibit large geometric and structural variations, the geometry, structure, and configuration of their individual components usually do not vary independently from each other but in a correlated fashion. The size of the body of an airplane, for example, constrains the range of deformations its wings can undergo to ensure that the entire object remains a functionally‐valid airplane. These co‐variation constraints, which are often non‐linear, can be either physical, and thus they can be explicitly enumerated, or implicit to the design and style of the shape family. In this article, we propose a data‐driven approach, which takes pre‐segmented 3D shapes with known component‐wise correspondences and learns how various geometric and structural properties of their components co‐vary across the set. We demonstrate, using a variety of 3D shape families, the utility of the proposed co‐variation analysis in various applications including 3D shape repositories exploration and shape editing where the propagation of deformations is guided by the co‐variation analysis. We also show that the framework can be used for context‐guided orientation of objects in 3D scenes. 相似文献
19.
We present a novel method for enhancing details in a digital photograph, inspired by the principle of art photography. In contrast to the previous methods that primarily rely on tone scaling, our technique provides a flexible tone transform model that consists of two operators: shifting and scaling. This model permits shifting of the tonal range in each image region to enable significant detail boosting regardless of the original tone. We optimize these shift and scale factors in our constrained optimization framework to achieve extreme detail enhancement across the image in a piecewise smooth fashion, as in art photography. The experimental results show that the proposed method brings out a significantly large amount of details even from an ordinary low‐dynamic range image. 相似文献
20.
This paper presents a novel hybrid particle‐grid method that tightly couples Lagrangian particle approach with Eulerian grid approach to simulate multi‐scale diffuse materials varying from disperse droplets to dissipating spray and their natural mixture and transition, originated from a violent (high‐speed) liquid stream. Despite the fact that Lagrangian particles are widely employed for representing individual droplets and Eulerian grid‐based method is ideal for volumetric spray modeling, using either one alone has encountered tremendous difficulties when effectively simulating droplet/spray mixture phenomena with high fidelity. To ameliorate, we propose a new hybrid model to tackle such challenges with many novel technical elements. At the geometric level, we employ the particle and density field to represent droplet and spray respectively, modeling their creation from liquid as well as their seamless transition. At the physical level, we introduce a drag force model to couple droplets and spray, and specifically, we employ Eulerian method to model the interaction among droplets and marry it with the widely‐used Lagrangian model. Moreover, we implement our entire hybrid model on CUDA to guarantee the interactive performance for high‐effective physics‐based graphics applications. The comprehensive experiments have shown that our hybrid approach takes advantages of both particle and grid methods, with convincing graphics effects for disperse droplets and spray simulation. 相似文献