首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In fluid animation, wake is one of the most important phenomena usually seen when an object is moving relative to the flow. However, in current shallow water simulation for interactive applications, this effect is greatly smeared out. In this paper, we present a method to efficiently synthesize these wakes. We adopt a generalized SPH method for shallow water simulation and two way solid fluid coupling. In addition, a 2D discrete vortex method is used to capture the detailed wake motions behind an obstacle, enriching the motion of SWE simulation. Our method is highly efficient since only 2D simulation is required. Moreover, by using a physically inspired procedural approach for particle seeding, DVM particles are only created in the wake region. Therefore, very few particles are required while still generating realistic wake patterns. When coupled with SWE, we show that these patterns can be seen using our method with marginal overhead.  相似文献   

2.
We propose a method that computes a piecewise constant approximation of a function defined on a mesh. The approximation is associated with the cells of a restricted Voronoï diagram. Our method optimizes an objective function measuring the quality of the approximation. This objective function depends on the placement of the samples that define the restricted Voronoï diagram and their associated function values. We study the continuity of the objective function, derive the closed‐form expression of its derivatives and use them to design a numerical solution mechanism. The method can be applied to a function that has discontinuities, and the result aligns the boundaries of the Voronoï cells with the discontinuities. Some examples are shown, suggesting potential applications in image vectorization and compact representation of lighting.  相似文献   

3.
We present a new method suitable for general purpose graphics processing units to render self‐shadows on dynamic height fields under dynamic light environments in real‐time. Visibility for each point in the height field is determined as the exact horizon for a set of azimuthal directions in time linear in height field size and the number of directions. The surface is shaded using the horizon information and a high‐resolution light environment extracted on‐line from a high dynamic range cube map, allowing for detailed extended shadows. The desired accuracy for any geometric content and lighting complexity can be matched by choosing a suitable number of azimuthal directions. Our method is able to represent arbitrary features of both high‐ and low‐frequency, unifying hard and soft shadowing. We achieve 23 fps on 1024×1024 height fields with 64 azimuthal directions under a 256×64 environment lighting on an Nvidia GTX 280 GPU.  相似文献   

4.
In this paper, we present a novel technique which simulates directional light scattering for more realistic interactive visualization of volume data. Our method extends the recent directional occlusion shading model by enabling light source positioning with practically no performance penalty. Light transport is approximated using a tilted cone‐shaped function which leaves elliptic footprints in the opacity buffer during slice‐based volume rendering. We perform an incremental blurring operation on the opacity buffer for each slice in front‐to‐back order. This buffer is then used to define the degree of occlusion for the subsequent slice. Our method is capable of generating high‐quality soft shadowing effects, allows interactive modification of all illumination and rendering parameters, and requires no pre‐computation.  相似文献   

5.
In this paper we present several techniques to interactively explore representations of 2D vector fields. Through a set of simple hand postures used on large, touch‐sensitive displays, our approach allows individuals to custom‐design glyphs (arrows, lines, etc.) that best reveal patterns of the underlying dataset. Interactive exploration of vector fields is facilitated through freedom of glyph placement, glyph density control, and animation. The custom glyphs can be applied individually to probe specific areas of the data but can also be applied in groups to explore larger regions of a vector field. Re‐positionable sources from which glyphs—animated according to the local vector field—continue to emerge are used to examine the vector field dynamically. The combination of these techniques results in an engaging visualization with which the user can rapidly explore and analyze varying types of 2D vector fields, using a virtually infinite number of custom‐designed glyphs.  相似文献   

6.
We present an importance sampling method for the bidirectional scattering distribution function (bsdf) of hair. Our method is based on the multi‐lobe hair scattering model presented by Sadeghi et al. [ [SPJT10] ]. We reduce noise by drawing samples from a distribution that approximates the bsdf well. Our algorithm is efficient and easy to implement, since the sampling process requires only the evaluation of a few analytic functions, with no significant memory overhead or need for precomputation. We tested our method in a research raytracer and a production renderer based on micropolygon rasterization. We show significant improvements for rendering direct illumination using multiple importance sampling and for rendering indirect illumination using path tracing.  相似文献   

7.
Particle‐based simulation techniques, like the discrete element method or molecular dynamics, are widely used in many research fields. In real‐time explorative visualization it is common to render the resulting data using opaque spherical glyphs with local lighting only. Due to massive overlaps, however, inner structures of the data are often occluded rendering visual analysis impossible. Furthermore, local lighting is not sufficient as several important features like complex shapes, holes, rifts or filaments cannot be perceived well. To address both problems we present a new technique that jointly supports transparency and ambient occlusion in a consistent illumination model. Our approach is based on the emission‐absorption model of volume rendering. We provide analytic solutions to the volume rendering integral for several density distributions within a spherical glyph. Compared to constant transparency our approach preserves the three‐dimensional impression of the glyphs much better. We approximate ambient illumination with a fast hierarchical voxel cone‐tracing approach, which builds on a new real‐time voxelization of the particle data. Our implementation achieves interactive frame rates for millions of static or dynamic particles without any preprocessing. We illustrate the merits of our method on real‐world data sets gaining several new insights.  相似文献   

8.
This work presents a new representation used as a rendering primitive of surfaces. Our representation is defined by an arbitrary cubic cell complex: a projection‐based parameterization domain for surfaces where geometry and appearance information are stored as tile textures. This representation is used by our ray casting rendering algorithm called projection mapping, which can be used for rendering geometry and appearance details of surfaces from arbitrary viewpoints. The projection mapping algorithm uses a fragment shader based on linear and binary searches of the relief mapping algorithm. Instead of traditionally rendering the surface, only front faces of our rendering primitive (our arbitrary cubic cell complex) are drawn, and geometry and appearance details of the surface are rendered back by using projection mapping. Alternatively, another method is proposed for mapping appearance information on complex surfaces using our arbitrary cubic cell complexes. In this case, instead of reconstructing the geometry as in projection mapping, the original mesh of a surface is directly passed to the rendering algorithm. This algorithm is applied in the texture mapping of cultural heritage sculptures.  相似文献   

9.
Repeated scene elements are copious and ubiquitous in natural images. Cutout of those repeated elements usually involves tedious and laborious user interaction by previous image segmentation methods. In this paper, we present RepSnapping, a novel method oriented to cutout of repeated scene elements with much less user interaction. By exploring inherent similarity between repeated elements, a new optimization model is introduced to thread correlated elements in the segmentation procedure. The model proposed here enables efficient solution using max‐flow/min cut on an extended graph. Experiments indicate that RepSnapping facilitates cutout of repeated elements better than the state‐of‐the‐art interactive image segmentation and repetition detection methods.  相似文献   

10.
In this paper we present a new algorithm for accurate rendering of translucent materials under Spherical Gaussian (SG) lights. Our algorithm builds upon the quantized‐diffusion BSSRDF model recently introduced in [ [dI11] ]. Our main contribution is an efficient algorithm for computing the integral of the BSSRDF with an SG light. We incorporate both single and multiple scattering components. Our model improves upon previous work by accounting for the incident angle of each individual SG light. This leads to more accurate rendering results, notably elliptical profiles from oblique illumination. In contrast, most existing models only consider the total irradiance received from all lights, hence can only generate circular profiles. Experimental results show that our method is suitable for rendering of translucent materials under finite‐area lights or environment lights that can be approximated by a small number of SGs.  相似文献   

11.
A common weathering effect is the appearance of cracks due to material fractures. Previous exemplar‐based aging and weathering methods have either reused images or sought to replicate observed patterns exactly. We introduce a new approach to exemplar‐based modeling that creates weathered patterns on synthetic objects by matching the statistics of fracture patterns in a photograph. We present a user study to determine which statistics are correlated to visual similarity and how they are perceived by the user. We then describe a revised physically‐based fracture model capable of producing a wide range of crack patterns at interactive rates. We demonstrate how a Bayesian optimization method can determine the parameters of this model so it can produce a pattern with the same key statistics as an exemplar. Finally, we present results using our approach and various exemplars to produce a variety of fracture effects in synthetic renderings of complex environments. The speed of the fracture simulation allows interactive previews of the fractured results and its application on large scale environments.  相似文献   

12.
Modeling of realistic garments is essential for online shopping and many other applications including virtual characters. Most of existing methods either require a multi‐camera capture setup or a restricted mannequin pose. We address the garment modeling problem according to a single input image. We design an all‐pose garment outline interpretation, and a shading‐based detail modeling algorithm. Our method first estimates the mannequin pose and body shape from the input image. It further interprets the garment outline with an oriented facet decided according to the mannequin pose to generate the initial 3D garment model. Shape details such as folds and wrinkles are modeled by shape‐from‐shading techniques, to improve the realism of the garment model. Our method achieves similar result quality as prior methods from just a single image, significantly improving the flexibility of garment modeling.  相似文献   

13.
This paper proposes two variants of a simple but efficient algorithm for structure‐preserving halftoning. Our algorithm extends Floyd‐Steinberg error diffusion; the goal of our extension is not only to produce good tone similarity but also to preserve structure and especially contrast, motivated by our intuition that human perception is sensitive to contrast. By enhancing contrast we attempt to preserve and enhance structure also. Our basic algorithm employs an adaptive, contrast‐aware mask. To enhance contrast, darker pixels should be more likely to be chosen as black pixels while lighter pixels should be more likely to be set as white. Therefore, when the positive error is diffused to nearby pixels in a mask, the dark pixels absorb less error and the light pixels absorb more. Conversely, negative error is distributed preferentially to dark pixels. We also propose using a mask with values that drop off steeply from the centre, intended to promote good spatial distribution. It is a very fast method whose speed mainly depends on the size of the mask. But this method suffers from distracting patterns. We then propose a variant on the basic idea which overcomes the first algorithm's shortcomings while maintaining its advantages through a priority‐aware scheme. Rather than proceeding in random or raster order, we sort the image first; each pixel is assigned a priority based on its up‐to‐date distance to black or to white, and pixels with extreme intensities are processed earlier. Since we use the same mask strategy as before, we promote good spatial distribution and high contrast. We use tone similarity, structure similarity, and contrast similarity to validate our algorithm. Comparisons with recent structure‐aware algorithms show that our method gives better results without sacrificing speed.  相似文献   

14.
Noisy volumetric details like clouds, grounds, plaster, bark, roughcast, etc. are frequently encountered in nature and bring an important contribution to the realism of outdoor scenes. We introduce a new interactive approach, easing the creation of procedural representations of “stochastic” volumetric details by using a single example photograph. Instead of attempting to reconstruct an accurate geometric representation from the photograph, we use a stochastic multi‐scale approach that fits parameters of a multi‐layered noise‐based 3D deformation model, using a multi‐resolution filter banks error metric. Once computed, visually similar details can be applied to arbitrary objects with a high degree of visual realism, since lighting and parallax effects are naturally taken into account. Our approach is inspired by image‐based techniques. In practice, the user supplies a photograph of an object covered by noisy details, provides a corresponding coarse approximation of the shape of this object as well as an estimated lighting condition (generally a light source direction). Our system then determines the corresponding noise‐based representation as well as some diffuse, ambient, specular and semi‐transparency reflectance parameters. The resulting details are fully procedural and, as such, have the advantage of extreme compactness, while they can be infinitely extended without repetition in order to cover huge surfaces.  相似文献   

15.
There is considerable recent progress in hair simulations, driven by the high demands in computer animated movies. However, capturing the complex interactions between hair and water is still relatively in its infancy. Such interactions are best modeled as those between water and an anisotropic permeable medium as water can flow into and out of the hair volume biased in hair fiber direction. Modeling the interaction is further challenged when the hair is allowed to move. In this paper, we introduce a simulation model that reproduces interactions between water and hair as a dynamic anisotropic permeable material. We utilize an Eulerian approach for capturing the microscopic porosity of hair and handle the wetting effects using a Cartesian bounding grid. A Lagrangian approach is used to simulate every single hair strand including interactions with each other, yielding fine‐detailed dynamic hair simulation. Our model and simulation generate many interesting effects of interactions between fine‐detailed dynamic hair and water, i.e., water absorption and diffusion, cohesion of wet hair strands, water flow within the hair volume, water dripping from the wet hair strands and morphological shape transformations of wet hair.  相似文献   

16.
Analyzing and generating sampling patterns are fundamental problems for many applications in computer graphics. Ideally, point patterns should conform to the problem at hand with spatially adaptive density and correlations. Although there exist excellent algorithms that can generate point distributions with spatially adaptive density or anisotropy, the pair‐wise correlation model, blue noise being the most common, is assumed to be constant throughout the space. Analogously, by relying on possibly modulated pair‐wise difference vectors, the analysis methods are designed to study only such spatially constant correlations. In this paper, we present the first techniques to analyze and synthesize point patterns with adaptive density and correlations. This provides a comprehensive framework for understanding and utilizing general point sampling. Starting from fundamental measures from stochastic point processes, we propose an analysis framework for general distributions, and a novel synthesis algorithm that can generate point distributions with spatio‐temporally adaptive density and correlations based on a locally stationary point process model. Our techniques also extend to general metric spaces. We illustrate the utility of the new techniques on the analysis and synthesis of real‐world distributions, image reconstruction, spatio‐temporal stippling, and geometry sampling.  相似文献   

17.
We present a reflectance model for dielectric cylinders with rough surfaces such as human hair fibers. Our model is energy conserving and can evaluate arbitrarily many orders of internal reflection. Accounting for compression and contraction of specular cones produces a new longitudinal scattering function which is non‐Gaussian and includes an off‐specular peak. Accounting for roughness in the azimuthal direction leads to an integral across the hair fiber which is efficiently evaluated using a Gaussian quadrature. Solving cubic equations is avoided, caustics are included in the model in a consistent fashion, and more accurate colors are predicted by considering many internal pathways.  相似文献   

18.
We investigate the representation of signals defined on triangle meshes using linearly interpolated vertex attributes. Compared to texture mapping, storing data only at vertices yields significantly lower memory overhead and less expensive runtime reconstruction. However, standard approaches to determine vertex values such as point sampling or averaging triangle samples lead to suboptimal approximations. We discuss how an optimal solution can be efficiently calculated using continuous least‐squares. In addition, we propose a regularization term that allows us to minimize gradient discontinuities and mach banding artifacts while staying close to the optimum. Our method has been integrated in a game production lighting tool and we present examples of representing signals such as ambient occlusion and precomputed radiance transfer in real game scenes, where vertex baking was used to free up resources for other game components.  相似文献   

19.
Creating realistic human movement is a time consuming and labour intensive task. The major difficulty is that the user has to edit individual joints while maintaining an overall realistic and collision free posture. Previous research suggests the use of data‐driven inverse kinematics, such that one can focus on the control of a few joints, while the system automatically composes a natural posture. However, as a common problem of kinematics synthesis, penetration of body parts is difficult to avoid in complex movements. In this paper, we propose a new data‐driven inverse kinematics framework that conserves the topology of the synthesizing postures. Our system monitors and regulates the topology changes using the Gauss Linking Integral (GUI), such that penetration can be efficiently prevented. As a result, complex motions with tight body movements, as well as those involving interaction with external objects, can be simulated with minimal manual intervention. Experimental results show that using our system, the user can create high quality human motion in real‐time by controlling a few joints using a mouse or a multi‐touch screen. The movement generated is both realistic and penetration free. Our system is best applied for interactive motion design in computer animations and games.  相似文献   

20.
This paper proposes a method for efficiently rendering indirect highlights. Indirect highlights are caused by the primary light source reflecting off two or more glossy surfaces. Accurately simulating such highlights is important to convey the realistic appearance of materials such as chrome and shiny metal. Our method models the glossy BRDF at a surface point as a directional distribution, using a spherical von Mises‐Fisher (vMF) distribution. As our main contribution, we merge multiple vMFs into a combined multimodal distribution. This effectively creates a filtered radiance response function, allowing us to efficiently estimate indirect highlights. We demonstrate our method in a near‐interactive application for rendering scenes with highly glossy objects. Our results produce realistic reflections under both local and environment lighting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号