首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
3D video billboard clouds reconstruct and represent a dynamic three-dimensional scene using displacement-mapped billboards. They consist of geometric proxy planes augmented with detailed displacement maps and combine the generality of geometry-based 3D video with the regularization properties of image-based 3D video. 3D video billboards are an image-based representation placed in the disparity space of the acquisition cameras and thus provide a regular sampling of the scene with a uniform error model. We propose a general geometry filtering framework which generates time-coherent models and removes reconstruction and quantization noise as well as calibration errors. This replaces the complex and time-consuming sub-pixel matching process in stereo reconstruction with a bilateral filter. Rendering is performed using a GPU-accelerated algorithm which generates consistent view-dependent geometry and textures for each individual frame. In addition, we present a semi-automatic approach for modeling dynamic three-dimensional scenes with a set of multiple 3D video billboards clouds.  相似文献   

2.
We present an image‐based rendering system to viewpoint‐navigate through space and time of complex real‐world, dynamic scenes. Our approach accepts unsynchronized, uncalibrated multivideo footage as input. Inexpensive, consumer‐grade camcorders suffice to acquire arbitrary scenes, for example in the outdoors, without elaborate recording setup procedures, allowing also for hand‐held recordings. Instead of scene depth estimation, layer segmentation or 3D reconstruction, our approach is based on dense image correspondences, treating view interpolation uniformly in space and time: spatial viewpoint navigation, slow motion or freeze‐and‐rotate effects can all be created in the same way. Acquisition simplification, integration of moving cameras, generalization to difficult scenes and space–time symmetric interpolation amount to a widely applicable virtual video camera system.  相似文献   

3.
We present a method for capturing the skeletal motions of humans using a sparse set of potentially moving cameras in an uncontrolled environment. Our approach is able to track multiple people even in front of cluttered and non‐static backgrounds, and unsynchronized cameras with varying image quality and frame rate. We completely rely on optical information and do not make use of additional sensor information (e.g. depth images or inertial sensors). Our algorithm simultaneously reconstructs the skeletal pose parameters of multiple performers and the motion of each camera. This is facilitated by a new energy functional that captures the alignment of the model and the camera positions with the input videos in an analytic way. The approach can be adopted in many practical applications to replace the complex and expensive motion capture studios with few consumer‐grade cameras even in uncontrolled outdoor scenes. We demonstrate this based on challenging multi‐view video sequences that are captured with unsynchronized and moving (e.g. mobile‐phone or GoPro) cameras.  相似文献   

4.
We present a near‐instant method for acquiring facial geometry and reflectance using a set of commodity DSLR cameras and flashes. Our setup consists of twenty‐four cameras and six flashes which are fired in rapid succession with subsets of the cameras. Each camera records only a single photograph and the total capture time is less than the 67ms blink reflex. The cameras and flashes are specially arranged to produce an even distribution of specular highlights on the face. We employ this set of acquired images to estimate diffuse color, specular intensity, specular exponent, and surface orientation at each point on the face. We further refine the facial base geometry obtained from multi‐view stereo using estimated diffuse and specular photometric information. This allows final submillimeter surface mesostructure detail to be obtained via shape‐from‐specularity. The final system uses commodity components and produces models suitable for authoring high‐quality digital human characters.  相似文献   

5.
Automatic camera control for scenes depicting human motion is an imperative topic in motion capture base animation, computer games, and other animation based fields. This challenging control problem is complex and combines both geometric constraints, visibility requirements, and aesthetic elements. Therefore, existing optimization‐based approaches for human action overview are often too demanding for online computation. In this paper, we introduce an effective automatic camera control which is extremely efficient and allows online performance. Rather than optimizing a complex quality measurement, at each time it selects one active camera from a multitude of cameras that render the dynamic scene. The selection is based on the correlation between each view stream and the human motion in the scene. Two factors allow for rapid selection among tens of candidate views in real‐time, even for complex multi‐character scenes: the efficient rendering of the multitude of view streams, and optimized calculations of the correlations using modified CCA. In addition to the method's simplicity and speed, it exhibits good agreement with both cinematic idioms and previous human motion camera control work. Our evaluations show that the method is able to cope with the challenges put forth by severe occlusions, multiple characters and complex scenes.  相似文献   

6.
The advent of affordable consumer grade RGB‐D cameras has brought about a profound advancement of visual scene reconstruction methods. Both computer graphics and computer vision researchers spend significant effort to develop entirely new algorithms to capture comprehensive shape models of static and dynamic scenes with RGB‐D cameras. This led to significant advances of the state of the art along several dimensions. Some methods achieve very high reconstruction detail, despite limited sensor resolution. Others even achieve real‐time performance, yet possibly at lower quality. New concepts were developed to capture scenes at larger spatial and temporal extent. Other recent algorithms flank shape reconstruction with concurrent material and lighting estimation, even in general scenes and unconstrained conditions. In this state‐of‐the‐art report, we analyze these recent developments in RGB‐D scene reconstruction in detail and review essential related work. We explain, compare, and critically analyze the common underlying algorithmic concepts that enabled these recent advancements. Furthermore, we show how algorithms are designed to best exploit the benefits of RGB‐D data while suppressing their often non‐trivial data distortions. In addition, this report identifies and discusses important open research questions and suggests relevant directions for future work.  相似文献   

7.
Since indoor scenes are frequently changed in daily life, such as re‐layout of furniture, the 3D reconstructions for them should be flexible and easy to update. We present an automatic 3D scene update algorithm to indoor scenes by capturing scene variation with RGBD cameras. We assume an initial scene has been reconstructed in advance in manual or other semi‐automatic way before the change, and automatically update the reconstruction according to the newly captured RGBD images of the real scene update. It starts with an automatic segmentation process without manual interaction, which benefits from accurate labeling training from the initial 3D scene. After the segmentation, objects captured by RGBD camera are extracted to form a local updated scene. We formulate an optimization problem to compare to the initial scene to locate moved objects. The moved objects are then integrated with static objects in the initial scene to generate a new 3D scene. We demonstrate the efficiency and robustness of our approach by updating the 3D scene of several real‐world scenes.  相似文献   

8.
Helmholtz Stereopsis is a powerful technique for reconstruction of scenes with arbitrary reflectance properties. However, previous formulations have been limited to static objects due to the requirement to sequentially capture reciprocal image pairs (i.e. two images with the camera and light source positions mutually interchanged). In this paper, we propose colour Helmholtz Stereopsis—a novel framework for Helmholtz Stereopsis based on wavelength multiplexing. To address the new set of challenges introduced by multispectral data acquisition, the proposed Colour Helmholtz Stereopsis pipeline uniquely combines a tailored photometric calibration for multiple camera/light source pairs, a novel procedure for spatio-temporal surface chromaticity calibration and a state-of-the-art Bayesian formulation necessary for accurate reconstruction from a minimal number of reciprocal pairs. In this framework, reflectance is spatially unconstrained both in terms of its chromaticity and the directional component dependent on the illumination incidence and viewing angles. The proposed approach for the first time enables modelling of dynamic scenes with arbitrary unknown and spatially varying reflectance using a practical acquisition set-up consisting of a small number of cameras and light sources. Experimental results demonstrate the accuracy and flexibility of the technique on a variety of static and dynamic scenes with arbitrary unknown BRDF and chromaticity ranging from uniform to arbitrary and spatially varying.  相似文献   

9.
In this paper we present a new practical camera characterization technique to improve color accuracy in high dynamic range (HDR) imaging. Camera characterization refers to the process of mapping device‐dependent signals, such as digital camera RAW images, into a well‐defined color space. This is a well‐understood process for low dynamic range (LDR) imaging and is part of most digital cameras — usually mapping from the raw camera signal to the sRGB or Adobe RGB color space. This paper presents an efficient and accurate characterization method for high dynamic range imaging that extends previous methods originally designed for LDR imaging. We demonstrate that our characterization method is very accurate even in unknown illumination conditions, effectively turning a digital camera into a measurement device that measures physically accurate radiance values — both in terms of luminance and color — rivaling more expensive measurement instruments.  相似文献   

10.
We present a method for rendering approximate soft shadows and diffuse indirect illumination in dynamic scenes. The proposed method approximates the original scene geometry with a set of tightly fitting spheres. In previous work, such spheres have been used to dynamically evaluate the visibility function to render soft shadows. In this paper, each sphere also acts as a low‐frequency secondary light source, thereby providing diffuse one‐bounce indirect illumination. The method is completely dynamic and proceeds in two passes: In a first pass, the light intensity distribution on each sphere is updated based on sample points on the corresponding object surface and converted into the spherical harmonics basis. In a second pass, this radiance information and the visibility are accumulated to shade final image pixels. The sphere approximation allows us to compute visibility and diffuse reflections of an object at interactive frame rates of over 20 fps for moderately complex scenes.  相似文献   

11.
In this paper, we present methods for 3D volumetric reconstruction of visual scenes photographed by multiple calibrated cameras placed at arbitrary viewpoints. Our goal is to generate a 3D model that can be rendered to synthesize new photo-realistic views of the scene. We improve upon existing voxel coloring/space carving approaches by introducing new ways to compute visibility and photo-consistency, as well as model infinitely large scenes. In particular, we describe a visibility approach that uses all possible color information from the photographs during reconstruction, photo-consistency measures that are more robust and/or require less manual intervention, and a volumetric warping method for application of these reconstruction methods to large-scale scenes.  相似文献   

12.
This paper presents methods for photo‐realistic rendering using strongly spatially variant illumination captured from real scenes. The illumination is captured along arbitrary paths in space using a high dynamic range, HDR, video camera system with position tracking. Light samples are rearranged into 4‐D incident light fields (ILF) suitable for direct use as illumination in renderings. Analysis of the captured data allows for estimation of the shape, position and spatial and angular properties of light sources in the scene. The estimated light sources can be extracted from the large 4D data set and handled separately to render scenes more efficiently and with higher quality. The ILF lighting can also be edited for detailed artistic control.  相似文献   

13.
Image space photon mapping has the advantage of simple implementation on GPU without pre‐computation of complex acceleration structures. However, existing approaches use only a single image for tracing caustic photons, so they are limited to computing only a part of the global illumination effects for very simple scenes. In this paper we fully extend the image space approach by using multiple environment maps for photon mapping computation to achieve interactive global illumination of dynamic complex scenes. The two key problems due to the introduction of multiple images are 1) selecting the images to ensure adequate scene coverage; and 2) reliably computing ray‐geometry intersections with multiple images. We present effective solutions to these problems and show that, with multiple environment maps, the image‐space photon mapping approach can achieve interactive global illumination of dynamic complex scenes. The advantages of the method are demonstrated by comparison with other existing interactive global illumination methods.  相似文献   

14.
A practical way to generate a high dynamic range (HDR) video using off‐the‐shelf cameras is to capture a sequence with alternating exposures and reconstruct the missing content at each frame. Unfortunately, existing approaches are typically slow and are not able to handle challenging cases. In this paper, we propose a learning‐based approach to address this difficult problem. To do this, we use two sequential convolutional neural networks (CNN) to model the entire HDR video reconstruction process. In the first step, we align the neighboring frames to the current frame by estimating the flows between them using a network, which is specifically designed for this application. We then combine the aligned and current images using another CNN to produce the final HDR frame. We perform an end‐to‐end training by minimizing the error between the reconstructed and ground truth HDR images on a set of training scenes. We produce our training data synthetically from existing HDR video datasets and simulate the imperfections of standard digital cameras using a simple approach. Experimental results demonstrate that our approach produces high‐quality HDR videos and is an order of magnitude faster than the state‐of‐the‐art techniques for sequences with two and three alternating exposures.  相似文献   

15.
In this work, we introduce the ‘mobility‐tree’ construct for high‐level functional representation of complex 3D indoor scenes. In recent years, digital indoor scenes are becoming increasingly popular, consisting of detailed geometry and complex functionalities. These scenes often consist of objects that reoccur in various poses and interrelate with each other. In this work we analyse the reoccurrence of objects in the scene and automatically detect their functional mobilities. ‘Mobility’ analysis denotes the motion capabilities (i.e. degree of freedom) of an object and its subpart which typically relates to their indoor functionalities. We compute an object's mobility by analysing its spatial arrangement, repetitions and relations with other objects and store it in a ‘mobility‐tree’. Repetitive motions in the scenes are grouped in ‘mobility‐groups’, for which we develop a set of sophisticated controllers facilitating semantical high‐level editing operations. We show applications of our mobility analysis to interactive scene manipulation and reorganization, and present results for a variety of indoor scenes.  相似文献   

16.
We address the problem of denoising Monte Carlo renderings by studying existing approaches and proposing a new algorithm that yields state‐of‐the‐art performance on a wide range of scenes. We analyze existing approaches from a theoretical and empirical point of view, relating the strengths and limitations of their corresponding components with an emphasis on production requirements. The observations of our analysis instruct the design of our new filter that offers high‐quality results and stable performance. A key observation of our analysis is that using auxiliary buffers (normal, albedo, etc.) to compute the regression weights greatly improves the robustness of zero‐order models, but can be detrimental to first‐order models. Consequently, our filter performs a first‐order regression leveraging a rich set of auxiliary buffers only when fitting the data, and, unlike recent works, considers the pixel color alone when computing the regression weights. We further improve the quality of our output by using a collaborative denoising scheme. Lastly, we introduce a general mean squared error estimator, which can handle the collaborative nature of our filter and its nonlinear weights, to automatically set the bandwidth of our regression kernel.  相似文献   

17.
We propose an analysis of numerical integration based on sampling theory, whereby the integration error caused by aliasing is suppressed by pre‐filtering. We derive a pre‐filter for evaluating the illumination integral yielding filtered importance sampling, a simple GPU‐based rendering algorithm for image‐based lighting. Furthermore, we extend the algorithm with real‐time visibility computation. Free from any pre‐computation, the algorithm supports fully dynamic scenes and, above all, is simple to implement.  相似文献   

18.
Crowded motions refer to multiple objects moving around and interacting such as crowds, pedestrians and etc. We capture crowded scenes using a depth scanner at video frame rates. Thus, our input is a set of depth frames which sample the scene over time. Processing such data is challenging as it is highly unorganized, with large spatio‐temporal holes due to many occlusions. As no correspondence is given, locally tracking 3D points across frames is hard due to noise and missing regions. Furthermore global segmentation and motion completion in presence of large occlusions is ambiguous and hard to predict. Our algorithm utilizes Gestalt principles of common fate and good continuity to compute motion tracking and completion respectively. Our technique does not assume any pre‐given markers or motion template priors. Our key‐idea is to reduce the motion completion problem to a 1D curve fitting and matching problem which can be solved efficiently using a global optimization scheme. We demonstrate our segmentation and completion method on a variety of synthetic and real world crowded scanned scenes.  相似文献   

19.
We propose a new adaptive algorithm for determining virtual point lights (VPL) in the scope of real‐time instant radiosity methods, which use a limited number of VPLs. The proposed method is based on Metropolis‐Hastings sampling and exhibits better temporal coherence of VPLs, which is particularly important for real‐time applications dealing with dynamic scenes. We evaluate the properties of the proposed method in the context of the algorithm based on imperfect shadow maps and compare it with the commonly used inverse transform method. The results indicate that the proposed technique can significantly reduce the temporal flickering artifacts even for scenes with complex materials and textures. Further, we propose a novel splatting scheme for imperfect shadow maps using hardware tessellation. This scheme significantly improves the rendering performance particularly for complex and deformable scenes. We thoroughly analyze the performance of the proposed techniques on test scenes with detailed materials, moving camera, and deforming geometry.  相似文献   

20.
Segmenting a moving foreground (fg) from its background (bg) is a fundamental step in many Machine Vision and Computer Graphics applications. Nevertheless, hardly any attempts have been made to tackle this problem in dynamic 3D scanned scenes. Scanned dynamic scenes are typically challenging due to noise and large missing parts. Here, we present a novel approach for motion segmentation in dynamic point‐cloud scenes designed to cater to the unique properties of such data. Our key idea is to augment fg/bg classification with an active learning framework by refining the segmentation process in an adaptive manner. Our method initially classifies the scene points as either fg or bg in an un‐supervised manner. This, by training discriminative RBF‐SVM classifiers on automatically labeled, high‐certainty fg/bg points. Next, we adaptively detect unreliable classification regions (i.e. where fg/bg separation is uncertain), locally add more training examples to better capture the motion in these areas, and re‐train the classifiers to fine‐tune the segmentation. This not only improves segmentation accuracy, but also allows our method to perform in a coarse‐to‐fine manner, thereby efficiently process high‐density point‐clouds. Additionally, we present a unique interactive paradigm for enhancing this learning process, by using a manual editing tool. The user explicitly edits the RBF‐SVM decision borders in unreliable regions in order to refine and correct the classification. We provide extensive qualitative and quantitative experiments on both real (scanned) and synthetic dynamic scenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号