共查询到20条相似文献,搜索用时 0 毫秒
1.
Andrea Tagliasacchi Thomas Delame Michela Spagnuolo Nina Amenta Alexandru Telea 《Computer Graphics Forum》2016,35(2):573-597
Given a shape, a skeleton is a thin centered structure which jointly describes the topology and the geometry of the shape. Skeletons provide an alternative to classical boundary or volumetric representations, which is especially effective for applications where one needs to reason about, and manipulate, the structure of a shape. These skeleton properties make them powerful tools for many types of shape analysis and processing tasks. For a given shape, several skeleton types can be defined, each having its own properties, advantages, and drawbacks. Similarly, a large number of methods exist to compute a given skeleton type, each having its own requirements, advantages, and limitations. While using skeletons for two‐dimensional (2D) shapes is a relatively well covered area, developments in the skeletonization of three‐dimensional (3D) shapes make these tasks challenging for both researchers and practitioners. This survey presents an overview of 3D shape skeletonization. We start by presenting the definition and properties of various types of 3D skeletons. We propose a taxonomy of 3D skeletons which allows us to further analyze and compare them with respect to their properties. We next overview methods and techniques used to compute all described 3D skeleton types, and discuss their assumptions, advantages, and limitations. Finally, we describe several applications of 3D skeletons, which illustrate their added value for different shape analysis and processing tasks. 相似文献
2.
We present a data‐driven method for synthesizing 3D indoor scenes by inserting objects progressively into an initial, possibly, empty scene. Instead of relying on few hundreds of hand‐crafted 3D scenes, we take advantage of existing large‐scale annotated RGB‐D datasets, in particular, the SUN RGB‐D database consisting of 10,000+ depth images of real scenes, to form the prior knowledge for our synthesis task. Our object insertion scheme follows a co‐occurrence model and an arrangement model, both learned from the SUN dataset. The former elects a highly probable combination of object categories along with the number of instances per category while a plausible placement is defined by the latter model. Compared to previous works on probabilistic learning for object placement, we make two contributions. First, we learn various classes of higher‐order object‐object relations including symmetry, distinct orientation, and proximity from the database. These relations effectively enable considering objects in semantically formed groups rather than by individuals. Second, while our algorithm inserts objects one at a time, it attains holistic plausibility of the whole current scene while offering controllability through progressive synthesis. We conducted several user studies to compare our scene synthesis performance to results obtained by manual synthesis, state‐of‐the‐art object placement schemes, and variations of parameter settings for the arrangement model. 相似文献
3.
Xiaokun Wu Michael Wand Klaus Hildebrandt Pushmeet Kohli Hans‐Peter Seidel 《Computer Graphics Forum》2014,33(7):229-238
In this paper, we address the problem of structure‐aware shape deformation: We specifically consider deformations that preserve symmetries of the shape being edited. While this is an elegant approach for obtaining plausible shape variations from minimal assumptions, a straightforward optimization is numerically expensive and poorly conditioned. Our paper introduces an explicit construction of bases of linear spaces of shape deformations that exactly preserve symmetries for any user‐defined level of detail. This permits the construction of low‐dimensional spaces of low‐frequency deformations that preserve the symmetries. We obtain substantial speed‐ups over alternative approaches for symmetry‐preserving shape editing due to (i) the sub‐space approach, which permits low‐res editing, (ii) the removal of redundant, symmetric information, and (iii) the simplification of the numerical formulation due to hard‐coded symmetry preservation. We demonstrate the utility in practice by applying our framework to symmetry‐preserving co‐rotated iterative Laplace surface editing of models with complex symmetry structure, including partial and nested symmetry. 相似文献
4.
Symmetry is a common characteristic in natural and man‐made objects. Its ubiquitous nature can be exploited to facilitate the analysis and processing of computational representations of real objects. In particular, in computer graphics, the detection of symmetries in 3D geometry has enabled a number of applications in modeling and reconstruction. However, the problem of symmetry detection in incomplete geometry remains a challenging task. In this paper, we propose a vote‐based approach to detect symmetry in 3D shapes, with special interest in models with large missing parts. Our algorithm generates a set of candidate symmetries by matching local maxima of a surface function based on the heat diffusion in local domains, which guarantee robustness to missing data. In order to deal with local perturbations, we propose a multi‐scale surface function that is useful to select a set of distinctive points over which the approximate symmetries are defined. In addition, we introduce a vote‐based scheme that is aware of the partiality, and therefore reduces the number of false positive votes for the candidate symmetries. We show the effectiveness of our method in a varied set of 3D shapes and different levels of partiality. Furthermore, we show the applicability of our algorithm in the repair and completion of challenging reassembled objects in the context of cultural heritage. 相似文献
5.
Paper pop‐ups are interesting three‐dimensional books that fascinate people of all ages. The design and construction of these pop‐up books however are done manually and require a lot of time and effort. This has led to computer‐assisted or automated tools for designing paper pop‐ups. This paper proposes an approach for automatically converting a 3D model into a multi‐style paper pop‐up. Previous automated approaches have only focused on single‐style pop‐ups, where each is made of a single type of pop‐up mechanisms. In our work, we combine multiple styles in a pop‐up, which is more representative of actual artist's creations. Our method abstracts a 3D model using suitable primitive shapes that both facilitate the formation of the considered pop‐up mechanisms and closely approximate the input model. Each shape is then abstracted using a set of 2D patches that combine to form a valid pop‐up. We define geometric conditions that ensure the validity of the combined pop‐up structures. In addition, our method also employs an image‐based approach for producing the patches to preserve the textures, finer details and important contours of the input model. Finally, our system produces a printable design layout and decides an assembly order for the construction instructions. The feasibility of our results is verified by constructing the actual paper pop‐ups from the designs generated by our system. 相似文献
6.
7.
Pseudo‐splines provide a rich family of subdivision schemes with a wide range of choices that meet various demands for balancing the approximation power, the length of the support, and the regularity of the limit functions. Special cases of pseudo‐splines include uniform odd‐degree B‐splines and the interpolatory 2n‐point subdivision schemes, and the other pseudo‐splines fill the gap between these two families. In this paper we show how the refinement step of a pseudo‐spline subdivision scheme can be implemented efficiently using repeated local operations, which require only the data in the direct neighbourhood of each vertex, and how to generalize this concept to quadrilateral meshes with arbitrary topology. The resulting pseudo‐spline surfaces can be arbitrarily smooth in regular mesh regions and C1 at extraordinary vertices as our numerical analysis reveals. 相似文献
8.
We present a new method for the completion of partial globally‐symmetric 3D objects, based on the detection of partial and approximate symmetries in the incomplete input dataset. In our approach, symmetry detection is formulated as a constrained sparsity maximization problem, which is solved efficiently using a robust RANSAC‐based optimizer. The detected partial symmetries are then reused iteratively, in order to complete the missing parts of the object. A global error relaxation method minimizes the accumulated alignment errors and a non‐rigid registration approach applies local deformations in order to properly handle approximate symmetry. Unlike previous approaches, our method does not rely on the computation of features, it uniformly handles translational, rotational and reflectional symmetries and can provide plausible object completion results, even on challenging cases, where more than half of the target object is missing. We demonstrate our algorithm in the completion of 3D scans with varying levels of partiality and we show the applicability of our approach in the repair and completion of heavily eroded or incomplete cultural heritage objects. 相似文献
9.
Zhige Xie Kai Xu Wen Shan Ligang Liu Yueshan Xiong Hui Huang 《Computer Graphics Forum》2015,34(7):1-11
Feature learning for 3D shapes is challenging due to the lack of natural paramterization for 3D surface models. We adopt the multi‐view depth image representation and propose Multi‐View Deep Extreme Learning Machine (MVD‐ELM) to achieve fast and quality projective feature learning for 3D shapes. In contrast to existing multi‐view learning approaches, our method ensures the feature maps learned for different views are mutually dependent via shared weights and in each layer, their unprojections together form a valid 3D reconstruction of the input 3D shape through using normalized convolution kernels. These lead to a more accurate 3D feature learning as shown by the encouraging results in several applications. Moreover, the 3D reconstruction property enables clear visualization of the learned features, which further demonstrates the meaningfulness of our feature learning. 相似文献
10.
We present a user‐guided, semi‐automatic approach to completing large holes in a mesh. The reconstruction of the missing features in such holes is usually ambiguous. Thus, unsupervised methods may produce unsatisfactory results. To overcome this problem, we let the user indicate constraints by providing merely four points per important feature curve on the mesh. Our algorithm regards this input as an indication of an important broken feature curve. Our completion is formulated as a global energy minimization problem, with user‐defined spatial‐coherence constraints, allows for completion that adheres to the existing features. We demonstrate the method on example problems that are not handled satisfactorily by fully automatic methods. 相似文献
11.
A new n‐sided surface scheme is presented, that generalizes tensor product Bézier patches. Boundaries and corresponding cross‐derivatives are specified as conventional Bézier surfaces of arbitrary degrees. The surface is defined over a convex polygonal domain; local coordinates are computed from generalized barycentric coordinates; control points are multiplied by weighted, biparametric Bernstein functions. A method for interpolating a middle point is also presented. This Generalized Bézier (GB) patch is based on a new displacement scheme that builds up multi‐sided patches as a combination of a base patch, n displacement patches and an interior patch; this is considered to be an alternative to the Boolean sum concept. The input ribbons may have different degrees, but the final patch representation has a uniform degree. Interior control points—other than those specified by the user—are placed automatically by a special degree elevation algorithm. GB patches connect to adjacent Bézier surfaces with G1continuity. The control structure is simple and intuitive; the number of control points is proportional to those of quadrilateral control grids. The scheme is introduced through simple examples; suggestions for future work are also discussed. 相似文献
12.
This paper studies the Voronoi diagrams on 2‐manifold meshes based on geodesic metric (a.k.a. geodesic Voronoi diagrams or GVDs), which have polyline generators. We show that our general setting leads to situations more complicated than conventional 2D Euclidean Voronoi diagrams as well as point‐source based GVDs, since a typical bisector contains line segments, hyperbolic segments and parabolic segments. To tackle this challenge, we introduce a new concept, called local Voronoi diagram (LVD), which is a combination of additively weighted Voronoi diagram and line‐segment Voronoi diagram on a mesh triangle. We show that when restricting on a single mesh triangle, the GVD is a subset of the LVD and only two types of mesh triangles can contain GVD edges. Based on these results, we propose an efficient algorithm for constructing the GVD with polyline generators. Our algorithm runs in O(nNlogN) time and takes O(nN) space on an n‐face mesh with m generators, where N = max{m, n}. Computational results on real‐world models demonstrate the efficiency of our algorithm. 相似文献
13.
Geodesic based Voronoi diagrams play an important role in many applications of computer graphics. Constructing such Voronoi diagrams usually resorts to exact geodesics. However, exact geodesic computation always consumes lots of time and memory, which has become the bottleneck of constructing geodesic based Voronoi diagrams. In this paper, we propose the window‐VTP algorithm, which can effectively reduce redundant computation and save memory. As a result, constructing Voronoi diagrams using the proposed window‐VTP algorithm runs 3–8 times faster than Liu et al.'s method [ LCT11 ], 1.2 times faster than its FWP‐MMP variant and more importantly uses 10–70 times less memory than both of them. 相似文献
14.
Fernando de Goes Beibei Liu Max Budninskiy Yiying Tong Mathieu Desbrun 《Computer Graphics Forum》2014,33(5):13-24
Geometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric tensors (i.e., forms) on triangulations. Symmetric 2‐tensors, while crucial in the definition of inner products and elliptic operators, have received only limited attention. They are often discretized by first defining a coordinate system per vertex, edge or face, then storing their components in this frame field. In this paper, we introduce a representation of arbitrary 2‐tensor fields on triangle meshes. We leverage a coordinate‐free decomposition of continuous 2‐tensors in the plane to construct a finite‐dimensional encoding of tensor fields through scalar values on oriented simplices of a manifold triangulation. We also provide closed‐form expressions of pairing, inner product, and trace for this discrete representation of tensor fields, and formulate a discrete covariant derivative and a discrete Lie bracket. Our approach extends discrete/finite‐element exterior calculus, recovers familiar operators such as the weighted Laplacian operator, and defines discrete notions of divergence‐free, curl‐free, and traceless tensors–thus offering a numerical framework for discrete tensor calculus on triangulations. We finally demonstrate the robustness and accuracy of our operators on analytical examples, before applying them to the computation of anisotropic geodesic distances on discrete surfaces. 相似文献
15.
This paper presents a method that can convert a given 3D mesh into a flat‐foldable model consisting of rigid panels. A previous work proposed a method to assist manual design of a single component of such flat‐foldable model, consisting of vertically‐connected side panels as well as horizontal top and bottom panels. Our method semi‐automatically generates a more complicated model that approximates the input mesh with multiple convex components. The user specifies the folding direction of each convex component and the fidelity of shape approximation. Given the user inputs, our method optimizes shapes and positions of panels of each convex component in order to make the whole model flat‐foldable. The user can check a folding animation of the output model. We demonstrate the effectiveness of our method by fabricating physical paper prototypes of flat‐foldable models. 相似文献
16.
Non‐rigid registration of 3D shapes is an essential task of increasing importance as commodity depth sensors become more widely available for scanning dynamic scenes. Non‐rigid registration is much more challenging than rigid registration as it estimates a set of local transformations instead of a single global transformation, and hence is prone to the overfitting issue due to underdetermination. The common wisdom in previous methods is to impose an ?2‐norm regularization on the local transformation differences. However, the ?2‐norm regularization tends to bias the solution towards outliers and noise with heavy‐tailed distribution, which is verified by the poor goodness‐of‐fit of the Gaussian distribution over transformation differences. On the contrary, Laplacian distribution fits well with the transformation differences, suggesting the use of a sparsity prior. We propose a sparse non‐rigid registration (SNR) method with an ?1‐norm regularized model for transformation estimation, which is effectively solved by an alternate direction method (ADM) under the augmented Lagrangian framework. We also devise a multi‐resolution scheme for robust and progressive registration. Results on both public datasets and our scanned datasets show the superiority of our method, particularly in handling large‐scale deformations as well as outliers and noise. 相似文献
17.
Marco Livesu Alessandro Muntoni Enrico Puppo Riccardo Scateni 《Computer Graphics Forum》2016,35(7):237-246
We propose a novel method for the automatic generation of structured hexahedral meshes of articulated 3D shapes. We recast the complex problem of generating the connectivity of a hexahedral mesh of a general shape into the simpler problem of generating the connectivity of a tubular structure derived from its curve‐skeleton. We also provide volumetric subdivision schemes to nicely adapt the topology of the mesh to the local thickness of tubes, while regularizing per‐element size. Our method is fast, one‐click, easy to reproduce, and it generates structured meshes that better align to the branching structure of the input shape if compared to previous methods for hexa mesh generation. 相似文献
18.
Zhenbao Liu Sicong Tang Weiwei Xu Shuhui Bu Junwei Han Kun Zhou 《Computer Graphics Forum》2014,33(7):269-278
Since indoor scenes are frequently changed in daily life, such as re‐layout of furniture, the 3D reconstructions for them should be flexible and easy to update. We present an automatic 3D scene update algorithm to indoor scenes by capturing scene variation with RGBD cameras. We assume an initial scene has been reconstructed in advance in manual or other semi‐automatic way before the change, and automatically update the reconstruction according to the newly captured RGBD images of the real scene update. It starts with an automatic segmentation process without manual interaction, which benefits from accurate labeling training from the initial 3D scene. After the segmentation, objects captured by RGBD camera are extracted to form a local updated scene. We formulate an optimization problem to compare to the initial scene to locate moved objects. The moved objects are then integrated with static objects in the initial scene to generate a new 3D scene. We demonstrate the efficiency and robustness of our approach by updating the 3D scene of several real‐world scenes. 相似文献
19.
In this paper, we introduce an interactive method suitable for retargeting both 3D objects and scenes. Initially, the input object or scene is decomposed into a collection of constituent components enclosed by corresponding control bounding volumes which capture the intra‐structures of the object or semantic grouping of objects in the 3D scene. The overall retargeting is accomplished through a constrained optimization by manipulating the control bounding volumes. Without inferring the intricate dependencies between the components, we define a minimal set of constraints that maintain the spatial arrangement and connectivity between the components to regularize the valid retargeting results. The default retargeting behavior can then be easily altered by additional semantic constraints imposed by users. This strategy makes the proposed method highly flexible to process a wide variety of 3D objects and scenes under an unified framework. In addition, the proposed method achieved more general structure‐preserving pattern synthesis in both object and scene levels. We demonstrate the effectiveness of our method by applying it to several complicated 3D objects and scenes. 相似文献