首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Image blur caused by object motion attenuates high frequency content of images, making post‐capture deblurring an ill‐posed problem. The recoverable frequency band quickly becomes narrower for faster object motion as high frequencies are severely attenuated and virtually lost. This paper proposes to translate a camera sensor circularly about the optical axis during exposure, so that high frequencies can be preserved for a wide range of in‐plane linear object motion in any direction within some predetermined speed. That is, although no object may be photographed sharply at capture time, differently moving objects captured in a single image can be deconvolved with similar quality. In addition, circular sensor motion is shown to facilitate blur estimation thanks to distinct frequency zero patterns of the resulting motion blur point‐spread functions. An analysis of the frequency characteristics of circular sensor motion in relation to linear object motion is presented, along with deconvolution results for photographs captured with a prototype camera.  相似文献   

2.
Typical high dynamic range (HDR) imaging approaches based on multiple images have difficulties in handling moving objects and camera shakes, suffering from the ghosting effect and the loss of sharpness in the output HDR image. While there exist a variety of solutions for resolving such limitations, most of the existing algorithms are susceptible to complex motions, saturation, and occlusions. In this paper, we propose an HDR imaging approach using the coded electronic shutter which can capture a scene with row‐wise varying exposures in a single image. Our approach enables a direct extension of the dynamic range of the captured image without using multiple images, by photometrically calibrating rows with different exposures. Due to the concurrent capture of multiple exposures, misalignments of moving objects are naturally avoided with significant reduction in the ghosting effect. To handle the issues with under‐/over‐exposure, noise, and blurs, we present a coherent HDR imaging process where the problems are resolved one by one at each step. Experimental results with real photographs, captured using a coded electronic shutter, demonstrate that our method produces a high quality HDR images without the ghosting and blur artifacts.  相似文献   

3.
Despite their high popularity, common high dynamic range (HDR) methods are still limited in their practical applicability: They assume that the input images are perfectly aligned, which is often violated in practise. Our paper does not only free the user from this unrealistic limitation, but even turns the missing alignment into an advantage: By exploiting the multiple exposures, we can create a super‐resolution image. The alignment step is performed by a modern energy‐based optic flow approach that takes into account the varying exposure conditions. Moreover, it produces dense displacement fields with subpixel precision. As a consequence, our approach can handle arbitrary complex motion patterns, caused by severe camera shake and moving objects. Additionally, it benefits from several advantages over existing strategies: (i) It is robust under outliers (noise, occlusions, saturation problems) and allows for sharp discontinuities in the displacement field. (ii) The alignment step neither requires camera calibration nor knowledge of the exposure times. (iii) It can be efficiently implemented on CPU and GPU architectures. After the alignment is performed, we use the obtained subpixel accurate displacement fields as input for an energy‐based, joint super‐resolution and HDR (SR‐HDR) approach. It introduces robust data terms and anisotropic smoothness terms in the SR‐HDR literature. Our experiments with challenging real world data demonstrate that these novelties are pivotal for the favourable performance of our approach.  相似文献   

4.
We describe a novel multiplexing approach to achieve tradeoffs in space, angle and time resolution in photography. We explore the problem of mapping useful subsets of time‐varying 4D lightfields in a single snapshot. Our design is based on using a dynamic mask in the aperture and a static mask close to the sensor. The key idea is to exploit scene‐specific redundancy along spatial, angular and temporal dimensions and to provide a programmable or variable resolution tradeoff among these dimensions. This allows a user to reinterpret the single captured photo as either a high spatial resolution image, a refocusable image stack or a video for different parts of the scene in post‐processing. A lightfield camera or a video camera forces a‐priori choice in space‐angle‐time resolution. We demonstrate a single prototype which provides flexible post‐capture abilities not possible using either a single‐shot lightfield camera or a multi‐frame video camera. We show several novel results including digital refocusing on objects moving in depth and capturing multiple facial expressions in a single photo.  相似文献   

5.
This paper proposes an algorithm which uses image registration to estimate a non‐uniform motion blur point spread function (PSF) caused by camera shake. Our study is based on a motion blur model which models blur effects of camera shakes using a set of planar perspective projections (i.e., homographies). This representation can fully describe motions of camera shakes in 3D which cause non‐uniform motion blurs. We transform the non‐uniform PSF estimation problem into a set of image registration problems which estimate homographies of the motion blur model one‐by‐one through the Lucas‐Kanade algorithm. We demonstrate the performance of our algorithm using both synthetic and real world examples. We also discuss the effectiveness and limitations of our algorithm for non‐uniform deblurring.  相似文献   

6.
Annoying shaky motion is one of the significant problems in home videos, since hand shake is an unavoidable effect when capturing by using a hand‐held camcorder. Video stabilization is an important technique to solve this problem, but the stabilized videos resulting from some current methods usually have decreased resolution and are still not so stable. In this paper, we propose a robust and practical method of full‐frame video stabilization while considering user's capturing intention to remove not only the high frequency shaky motions but also the low frequency unexpected movements. To guess the user's capturing intention, we first consider the regions of interest in the video to estimate which regions or objects the user wants to capture, and then use a polyline to estimate a new stable camcorder motion path while avoiding the user's interested regions or objects being cut out. Then, we fill the dynamic and static missing areas caused by frame alignment from other frames to keep the same resolution and quality as the original video. Furthermore, we smooth the discontinuous regions by using a three‐dimensional Poisson‐based method. After the above automatic operations, a full‐frame stabilized video can be achieved and the important regions and objects can also be preserved.  相似文献   

7.
Mobile phones and tablets are rapidly gaining significance as omnipresent image and video capture devices. In this context we present an algorithm that allows such devices to capture high dynamic range (HDR) video. The design of the algorithm was informed by a perceptual study that assesses the relative importance of motion and dynamic range. We found that ghosting artefacts are more visually disturbing than a reduction in dynamic range, even if a comparable number of pixels is affected by each. We incorporated these findings into a real‐time, adaptive metering algorithm that seamlessly adjusts its settings to take exposures that will lead to minimal visual artefacts after recombination into an HDR sequence. It is uniquely suitable for real‐time selection of exposure settings. Finally, we present an off‐line HDR reconstruction algorithm that is matched to the adaptive nature of our real‐time metering approach.  相似文献   

8.
Current HDR acquisition techniques are based on either (i) fusing multibracketed, low dynamic range (LDR) images, (ii) modifying existing hardware and capturing different exposures simultaneously with multiple sensors, or (iii) reconstructing a single image with spatially‐varying pixel exposures. In this paper, we propose a novel algorithm to recover high‐quality HDRI images from a single, coded exposure. The proposed reconstruction method builds on recently‐introduced ideas of convolutional sparse coding (CSC); this paper demonstrates how to make CSC practical for HDR imaging. We demonstrate that the proposed algorithm achieves higher‐quality reconstructions than alternative methods, we evaluate optical coding schemes, analyze algorithmic parameters, and build a prototype coded HDR camera that demonstrates the utility of convolutional sparse HDRI coding with a custom hardware platform.  相似文献   

9.
We present a markerless performance capture system that can acquire the motion and the texture of human actors performing fast movements using only commodity hardware. To this end we introduce two novel concepts: First, a staggered surround multi‐view recording setup that enables us to perform model‐based motion capture on motion‐blurred images, and second, a model‐based deblurring algorithm which is able to handle disocclusion, self‐occlusion and complex object motions. We show that the model‐based approach is not only a powerful strategy for tracking but also for deblurring highly complex blur patterns.  相似文献   

10.
Light field videos express the entire visual information of an animated scene, but their shear size typically makes capture, processing and display an off‐line process, i. e., time between initial capture and final display is far from real‐time. In this paper we propose a solution for one of the key bottlenecks in such a processing pipeline, which is a reliable depth reconstruction possibly for many views. This is enabled by a novel correspondence algorithm converting the video streams from a sparse array of off‐the‐shelf cameras into an array of animated depth maps. The algorithm is based on a generalization of the classic multi‐resolution Lucas‐Kanade correspondence algorithm from a pair of images to an entire array. Special inter‐image confidence consolidation allows recovery from unreliable matching in some locations and some views. It can be implemented efficiently in massively parallel hardware, allowing for interactive computations. The resulting depth quality as well as the computation performance compares favorably to other state‐of‐the art light field‐to‐depth approaches, as well as stereo matching techniques. Another outcome of this work is a data set of light field videos that are captured with multiple variants of sparse camera arrays.  相似文献   

11.
12.
We present a real‐time multi‐view facial capture system facilitated by synthetic training imagery. Our method is able to achieve high‐quality markerless facial performance capture in real‐time from multi‐view helmet camera data, employing an actor specific regressor. The regressor training is tailored to specified actor appearance and we further condition it for the expected illumination conditions and the physical capture rig by generating the training data synthetically. In order to leverage the information present in live imagery, which is typically provided by multiple cameras, we propose a novel multi‐view regression algorithm that uses multi‐dimensional random ferns. We show that higher quality can be achieved by regressing on multiple video streams than previous approaches that were designed to operate on only a single view. Furthermore, we evaluate possible camera placements and propose a novel camera configuration that allows to mount cameras outside the field of view of the actor, which is very beneficial as the cameras are then less of a distraction for the actor and allow for an unobstructed line of sight to the director and other actors. Our new real‐time facial capture approach has immediate application in on‐set virtual production, in particular with the ever‐growing demand for motion‐captured facial animation in visual effects and video games.  相似文献   

13.
Videos captured by consumer cameras often exhibit temporal variations in color and tone that are caused by camera auto‐adjustments like white‐balance and exposure. When such videos are sub‐sampled to play fast‐forward, as in the increasingly popular forms of timelapse and hyperlapse videos, these temporal variations are exacerbated and appear as visually disturbing high frequency flickering. Previous techniques to photometrically stabilize videos typically rely on computing dense correspondences between video frames, and use these correspondences to remove all color changes in the video sequences. However, this approach is limited in fast‐forward videos that often have large content changes and also might exhibit changes in scene illumination that should be preserved. In this work, we propose a novel photometric stabilization algorithm for fast‐forward videos that is robust to large content‐variation across frames. We compute pairwise color and tone transformations between neighboring frames and smooth these pair‐wise transformations while taking in account the possibility of scene/content variations. This allows us to eliminate high‐frequency fluctuations, while still adapting to real variations in scene characteristics. We evaluate our technique on a new dataset consisting of controlled synthetic and real videos, and demonstrate that our techniques outperforms the state‐of‐the‐art.  相似文献   

14.
Many video sequences consist of a locally dynamic background containing moving foreground subjects. In this paper we propose a novel way of re‐displaying these sequences, by giving the user control over a virtual camera frame. Based on video mosaicing, we first compute a static high quality background panorama. After segmenting and removing the foreground subjects from the original video, the remaining elements are merged into a dynamic background panorama, which seamlessly extends the original video footage. We then re‐display this augmented video by warping and cropping the panorama. The virtual camera can have an enlarged field‐of‐view and a controlled camera motion. Our technique is able to process videos with complex camera motions, reconstructing high quality panoramas without parallax artefacts, visible seams or blurring, while retaining repetitive dynamic elements.  相似文献   

15.
Light field reconstruction algorithms can substantially decrease the noise in stochastically rendered images. Recent algorithms for defocus blur alone are both fast and accurate. However, motion blur is a considerably more complex type of camera effect, and as a consequence, current algorithms are either slow or too imprecise to use in high quality rendering. We extend previous work on real‐time light field reconstruction for defocus blur to handle the case of simultaneous defocus and motion blur. By carefully introducing a few approximations, we derive a very efficient sheared reconstruction filter, which produces high quality images even for a low number of input samples. Our algorithm is temporally robust, and is about two orders of magnitude faster than previous work, making it suitable for both real‐time rendering and as a post‐processing pass for offline rendering.  相似文献   

16.
We present user‐controllable and plausible defocus blur for a stochastic rasterizer. We modify circle of confusion coefficients per vertex to express more general defocus blur, and show how the method can be applied to limit the foreground blur, extend the in‐focus range, simulate tilt‐shift photography, and specify per‐object defocus blur. Furthermore, with two simplifying assumptions, we show that existing triangle coverage tests and tile culling tests can be used with very modest modifications. Our solution is temporally stable and handles simultaneous motion blur and depth of field.  相似文献   

17.
This paper presents a novel video stabilization approach by leveraging the multiple planes structure of video scene to stabilize inter‐frame motion. As opposed to previous stabilization procedure operating in a single plane, our approach primarily deals with multiplane videos and builds their multiple planes structure for performing stabilization in respective planes. Hence, a robust plane detection scheme is devised to detect multiple planes by classifying feature trajectories according to reprojection errors generated by plane induced homographies. Then, an improved planar stabilization technique is applied by conforming to the compensated homography in each plane. Finally, multiple stabilized planes are coherently fused by content‐preserving image warps to obtain the output stabilized frames. Our approach does not need any stereo reconstruction, yet is able to produce commendable results due to awareness of multiple planes structure in the stabilization. Experimental results demonstrate the effectiveness and efficiency of our approach to robust stabilization on multiplane videos.  相似文献   

18.
Since high dynamic range (HDR) displays are not yet widely available, there is still a need to perform a dynamic range reduction of HDR content to reproduce it properly on standard dynamic range (SDR) displays. The most common techniques for performing this reduction are termed tone‐mapping operators (TMOs). Although mobile devices are becoming widespread, methods for displaying HDR content on these SDR screens are still very much in their infancy. While several studies have been conducted to evaluate TMOs, few have been done with a goal of testing small screen displays (SSDs), common on mobile devices. This paper presents an evaluation of six state‐of‐the‐art HDR video TMOs. The experiments considered three different levels of ambient luminance under which 180 participants were asked to rank the TMOs for seven tone‐mapped HDR video sequences. A comparison was conducted between tone‐mapped HDR video footage shown on an SSD and on a large screen SDR display using an HDR display as reference. The results show that there are differences between the performance of the TMOs under different ambient lighting levels and the TMOs that perform well on traditional large screen displays also perform well on SSDs at the same given luminance level.  相似文献   

19.
Temporal coherence is an important problem in Non‐Photorealistic Rendering for videos. In this paper, we present a novel approach to enhance temporal coherence in video painting. Instead of painting on video frame, our approach first partitions the video into multiple motion layers, and then places the brush strokes on the layers to generate the painted imagery. The extracted motion layers consist of one background layer and several object layers in each frame. Then, background layers from all the frames are aligned into a panoramic image, on which brush strokes are placed to paint the background in one‐shot. The strokes used to paint object layers are propagated frame by frame using smooth transformations defined by thin plate splines. Once the background and object layers are painted, they are projected back to each frame and blent to form the final painting results. Thanks to painting a single image, our approach can completely eliminate the flickering in background, and temporal coherence on object layers is also significantly enhanced due to the smooth transformation over frames. Additionally, by controlling the painting strokes on different layers, our approach is easy to generate painted video with multi‐style. Experimental results show that our approach is both robust and efficient to generate plausible video painting.  相似文献   

20.
This paper presents methods for photo‐realistic rendering using strongly spatially variant illumination captured from real scenes. The illumination is captured along arbitrary paths in space using a high dynamic range, HDR, video camera system with position tracking. Light samples are rearranged into 4‐D incident light fields (ILF) suitable for direct use as illumination in renderings. Analysis of the captured data allows for estimation of the shape, position and spatial and angular properties of light sources in the scene. The estimated light sources can be extracted from the large 4D data set and handled separately to render scenes more efficiently and with higher quality. The ILF lighting can also be edited for detailed artistic control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号