首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
张至斌  杨婷  尹磊  殷昕  张建国 《含能材料》2017,25(3):209-214
以1,1′-二羟基-5,5′-联四唑(BTO)为起始原料合成新型含能材料——1,1′-二羟基-5,5′-联四唑铷(BTORb)。用X-射线单晶衍射仪测定其晶体结构,结果表明Rb~+与BTO形成8配位结构,不同片层的BTO与Rb~+交替排列相互连接,构成三维网状结构。用差示扫描量热分析技术(DSC)和热重分析技术(TG-DTG)研究其热分解行为,其热分解温度起始于292℃,表明其热稳定性良好。用Kissinger法和Ozawa法计算其非等温反应动力学参数,得到其热分解Arrhenius方程为lnk=13.51-186.3×10~3/RT。计算得到其标准生成焓Δ_fH_(298)~θ为274.91 k J·mol~(-1)。计算其热爆炸临界温度T_b为356.7℃,表明其热安定性较好。800 g落锤下,BTORb的撞击感度H_(50)为34.8 cm,70°摆角、1.23 MPa条件下,其摩擦感度爆炸百分数为36%,静电火花感度50%发火能量为0.34 J。  相似文献   

2.
以乙二肟为原料,用"一锅法"制备了5,5'-联四唑-1,1'-二羟基二水合物(BTO)的关键中间体二叠氮基乙二肟(DAG),以复分解反应合成了5,5'-联四唑-1,1'-二氧钾盐(PBTOX),采用元素分析、红外光谱对其结构进行了表征,用DTA-TG技术研究了PBTOX的热分解过程,用原子力显微技术(AFM)和洛伦兹接触共振(LCR)成像技术测试了PBTOX晶体的表面形貌和晶体力学性能,进行了感度测试。结果表明,PBTOX的晶体结构为层状结构,其5℃·min~(-1)升温速率下的分解峰顶温度为383℃。撞击感度爆炸百分数和摩擦感度爆炸百分数均为0%。  相似文献   

3.
以40%乙二醛水溶液和盐酸羟胺为原料,通过取代、氯化、叠氮化、成环、成盐反应制备了5,5'-联四唑-1,1'-二氧二羟铵(TKX-50).采用元素分析,核磁对其结构进行表征,并进行了撞击感度和摩擦感度测试.研究了反应温度、保温时间、保温温度对关键中间体5,5'-联四唑-1,1'-二羟基二水合物(BTO)收率影响,以及羟胺水溶液浓度对TKX-50收率影响.结果表明,TKX-50的撞击感度H50为41 cm,摩擦感度爆炸百分数为0%.羟胺水溶液较佳浓度为50%,成环的较佳反应条件为:反应温度0~5℃,保温时间12h,保温温度20~25℃.  相似文献   

4.
通过草酰二肼与1,1'-二羟基-5,5'-双四唑(BTO)溶液的质子化作用制备了1,1'-二羟基-5,5'联四唑的二草酰二肼盐(BTODOH),产率达到90%以上,并对其结构及性能进行了表征测试。用X射线单晶衍射法测定了BTODOH的单晶结构,获得晶体结构参数。BTODOH初始分解温度为257.1℃,对撞击、摩擦和静电火花不敏感,该化合物的生成热为480.3k J/mol;模拟计算表明BTODOH应用于GAP/AP固体推进剂配方体系中具有较好的消烟效果,对推进剂比冲影响较小。  相似文献   

5.
为了研究不同重结晶工艺对1,1'-二羟基-5,5'-联四唑二羟胺盐(HATO,TKX-50)热性能和机械感度的影响,分别采用降温法、溶剂-非溶剂法,制备了6种不同粒径和晶体形貌的HATO样品。利用激光粒度仪和扫描电镜对不同重结晶工艺所得HATO样品的粒度和形貌进行了表征。利用差示扫描量热仪(DSC)对其热分解性能进行了分析。按GJB772A-1997方法对其撞击、摩擦感度进行了测试。结果表明,不添加表面活性剂,利用降温重结晶制备的HATO样品其粒度最大(d50=196.5μm)且晶体表面光滑、形状规则,表现出最高的分解温度及较低的机械感度,其分解峰温为249.1℃,撞击感度、摩擦感度分别为8%、20%。  相似文献   

6.
以二氯乙二肟、叠氮化钠和二甲基甲酰胺(DMF)为主要原材料,通过两步反应先制备1,1'-二羟基-5,5'-联四唑(1,1'-BTO),再与盐酸羟胺反应合成目标化合物5,5'-联四唑-1,1'-二氧二羟铵(TKX-50),收率73.2%。用Gaussian软件在B3LYP/6-31++G水平下对该离子盐的结构进行模拟,发现其晶体中存在较强的分子间和分子内的氢键作用。这种氢键作用有效提高了TKX-50的密度,达到1.918 g·cm-3。基于该密度,计算出该含能盐爆速9698 m·s-1,爆压42.4 GPa,摩擦感度和撞击感度分别为120 N和20 J,性能优于奥克托今(HMX)和六硝基六氮杂异戊兹烷(CL-20)。  相似文献   

7.
以5,5'-联四唑-1,1'-二羟基二水化合物(H_2BTO·2H_2O)与Pb(NO_3)_2为原料,采用简单的一步溶剂热法合成了一种配位聚合物[Pb(BTO)(H_2O)]n(BTO=5,5'-联四唑-1,1'-二氧化合物)。用X射线单晶衍射、傅里叶变换红外光谱及元素分析对目标化合物进行了表征。利用差热分析(DTA)、差示扫描量热分析(DSC)和热重-微分热重分析(TG-DTG)研究了该含能配位聚合物的热分解过程。采用Kissinger法和Ozawa法分别计算了其热分解动力学参数(活化能E_K、E_O、指前因子A)。用WL-1型撞击感度测试仪测定了[Pb(BTO)(H_2O)]_n的特性落高H_(50),采用DTA分析了其对高氯酸铵(AP)热分解的催化性能。结果表明,该晶体属于单斜晶系,C2/c空间群,a=14.342(3),b=6.5757(12),c=8.4715(16),V=683.3(2)~3,D_c=3.823 g·cm~(-3),Z=4。在5 K·min~(-1)的DSC曲线上,其分解峰值温度为582.2 K,TG曲线上存在三个质量损失阶段,主要质量损失阶段位于543.9~599.5 K,最终剩余残渣质量为44.60%。E_K=211.67 kJ·mol~(-1),E_O=210.64 kJ·mol~(-1),ln(A/s~(-1))=18.594,H_(50)=7.6 cm,显示其具有较好的热稳定性和适当的感度。该配位聚合物添加量为10%时,AP的高温分解峰提前40.1 K,而且热分解反应的激烈程度也大大提高,对AP表现出良好的催化性能。  相似文献   

8.
张至斌  张建国  秦涧  殷昕 《含能材料》2016,24(5):421-426
以二氨基乙二肟(DAG)和1,1'-二羟基-5,5'-联四唑(BTO)为起始原料合成了新型富氮含能盐——1,1'-二羟基-5,5'-联四唑-二氨基乙二肟(DAGBTO)。用元素分析、傅里叶变换红外光谱、核磁和质谱对其结构进行了表征。培养了目标化合物的单晶,并通过X-射线单晶衍射仪测定了其晶体结构,结果表明其属于单斜晶系,C2/c空间群,晶胞参数为:a=11.3121(11),b=6.4480(4),c=15.3202(16),β=105.990(2)°,V=1074.23(17)~3,Z=4,D_c=1.782 g·cm~(-3),F(000)=592。通过差示扫描量热分析仪(DSC)研究其热分解行为,并对其非等温反应动力学参数和热安全性参数进行计算,其反应活化能为210.6 kJ·mol~(-1)(Kissinger法)和207.9 kJ·mol~(-1)(Ozawa-Doyle法),二者一致性较好,热分解温度高于190℃,热爆炸临界温度Tbp为200.7℃。  相似文献   

9.
为获得绿色低感高能炸药,研究了5,5'-联四唑-1,1'-二氧二羟铵(TKX-50)的50克量级制备方法。以乙二醛为起始原料,通过肟化、氯代、叠氮化、环合制得了关键中间体5,5'-联四唑-1,1'-二羟基二水合物(1,1'-BTO),1,1'-BTO与羟胺水溶液成盐直接制备出目标物TKX-50,产品经1H NMR,IR,MS,DSC和元素分析确证结构。重点考察了由1,1'-BTO制备TKX-50反应中投料比、时间及温度对收率的影响,确定了适宜的工艺条件:投料摩尔比n(1,1'-BTO)∶n(NH2OH·HCl)∶n(Na OH)=1∶2.2∶2.2,反应时间1 h,温度80℃时,单步反应收率80.1%。合成路线总收率为41.5%。  相似文献   

10.
以乙二醛为原料,经肟化合成了乙二肟、后经氯化合成了二氯乙二肟、后经叠氮化-环合反应合成1,1'-二羟基-5,5'-联四唑二水合物、最后经过中和反应合成了1,1'-二羟基-5,5'-联四唑二羟胺盐(TKX-50)。总收率为63%,并采用核磁共振、红外、质谱表征了其结构。优化并确定了反应最佳条件:叠氮化-环合反应时,以丙酮-水作为混合溶剂,反应温度为0℃,反应1.5 h后用乙醚萃取,萃取液不经过任何处理直接通入氯化氢气体进行环合反应得到1,1'-二羟基-5,5'-联四唑二水合物,收率为88%;酸碱中和反应时,以乙酸乙酯为溶剂,反应温度为50℃,反应2 h,抽滤并冰水水洗得到TKX-50,收率为94%。  相似文献   

11.
以40%乙二醛水溶液和盐酸羟胺为原料,通过取代、氯化、叠氮化、成环、成盐反应制备了5,5-联四唑-1,1-二氧化物二羟铵(TKX-50),总得率为19%。通过元素分析、红外光谱、核磁对其结构进行表征,测定了TKX-50的撞击感度H50为41cm,摩擦感度爆炸百分数为72%。研究了反应温度、反应时间、保温温度对5,5-联四唑-1,1-二氧化物二水合物(BTO)得率的影响,确定了成环的较佳反应条件为:反应温度0~5℃,反应时间12h,保温温度20~25℃。  相似文献   

12.
黄海丰  杨军  杨普  李晓强  李慧  俞艳 《含能材料》2014,22(4):462-466
以二氯乙二肟为起始原料,通过一锅法合成了四水合1,1'-二羟基-5,5'-联四唑钠盐(SBTD·4H2O),并用红外、元素分析、扫描电子显微镜对其进行了表征,测试了目标化合物的单晶结构,结果表明其属于三斜晶系,P-1空间群,晶胞参数为a=5.6440(11),b=6.4476(17),c=8.303(11),α=100.131(5)°,β=96.789(3)°,γ=112.157(3)°,V=1,Dc=1.761 g·cm-3,F(000)=146,μ(Mo Kα)=0.227 mm-1。采用热重-差示扫描量热联用(TG-DSC)对其进行了热行为分析,在加热速率为10 K·min-1的条件下,该化合物从83.9℃开始失去结晶水,368.1℃开始分解,分解峰值温度为398.6℃,热稳定性良好。依据GJB772A-1997对SBT D·4H2O的感度进行了测试,撞击感度H50100 cm,摩擦感度为0%,这表明其对机械撞击和摩擦不敏感。  相似文献   

13.
以乙二酸和氨基胍碳酸氢盐为原料,通过成环、硝化、成盐反应合成了5,5'-二硝胺基-3,3'-联-1,2,4-三唑碳酰肼盐(CBNT)。采用红外光谱、核磁共振谱、元素分析表征了其结构。采用差热分析-热重法(DTA-TG)研究了CBNT的热行为,并测试了其撞击感度和摩擦感度。结果表明,CBNT的放热分解峰的温度为229℃,它的撞击感度H_(50)为89 cm,摩擦感度(爆炸百分数)为4%~8%。  相似文献   

14.
王杰群  王鹏程  陆明 《含能材料》2016,24(6):538-543
1,1'-二羟基-5,5'-联四唑类化合物是近年来高能钝感材料研究的热点,为研究这类化合物的热安全性,用差示扫描量热法(DSC)和热重法(TG)在升温速率分别为5,10,15,20 K·min~(-1)的条件下研究了1,1'-二羟基-5,5'-联四唑钻盐(1,1'-BTOCo)、铜盐(1,1'-BTOCu)和铅盐(1,1'-BTOPb)的热分解过程。分别用Kissinger法和Ozawa法计算了三种盐的表观活化能(E_K和E_O)、指前因子(A_k),得到其热分解动力学参数和热分解机理函数。结果表明,1,'-BTOCo的E_K=162.35 kJ·mol~(-1),A_K=1.83×10~(15)s~(-1),T_(SADT)=534.46 K,T_(bpo)=542.22 K;1,1'-BTOCu的E_K=217.95kJ·mol~(-1),A_K=12.58×10~(20)s~(-1),T_(SADT)=527.56 K,T_(bpo)=539.11 K;1,1'-BTOPb的E_K=223.52 kJ·mol~(-1),A_K=4.24×10~(20)s~(-1),T_(SADT)=525.87 K,T_(bpo)=580.00 K。  相似文献   

15.
1,1'-二羟基-5,5'-联四唑二羟胺盐的合成与性能   总被引:1,自引:0,他引:1  
以二氯乙二肟为原料,经取代反应、环化反应和复分解反应合成了1,1'-二羟基-5,5'-联四唑二羟胺盐(HATO),总收率为81.7%。研究以未经干燥的二叠氮基乙二肟为中间体,提高了操作的安全性,采用溶解度较大的锂盐为中间体,提高了复分解反应的收率。对HATO的热稳定性、机械感度、形貌和粒度分布进行了研究。结果表明,HATO的热分解峰温为249.14℃(10℃·min-1),放气量为0.3 mL·g-1(100℃,48 h),撞击爆炸概率为16%(10 kg落锤),特性落高为100 cm(5 kg落锤),摩擦爆炸概率为24%(3.92 MPa,90°),粒度为334μm。  相似文献   

16.
以5,5'-联四唑~(-1),1'-二羟基二水合物(BTO)、1,2,4-三氮唑为原料合成了一种新的5,5'-联四唑~(-1),1'-二氧~(-1),2,4-三氮唑(T2BTO)含能离子盐。采用X-射线单晶衍射、FT-IR、1H NMR、13C NMR和元素分析表征了其结构。采用差示扫描量热法(DSC)和热重-微分热重(TG-DTG)研究了其热行为。用Kissinger法和Ozawa法分别计算了其热分解动力学参数(活化能Ea、EO、指前因子A)。采用WL~(-1)型撞击感度测试仪测定了其特性落高H50。用Kamlet-Jacobs经验公式计算了其爆速(D)和爆压(p)。结果表明,该晶体属于单斜晶系,C2/c空间群,晶体学参数为a=15.2410(12),b=10.5185(8),c=7.7546(7),V=1221.26(18)~3,D_c=1.688g·cm~(-3),Z=8。在10 K·min~(-1)的DSC曲线上,其分解峰值温度为519.9 K,TG曲线上只存在一个失重阶段,该阶段位于453.2~523.2 K,失重为90.8%,显示其有较好的热稳定性。E_K=144.39 k J·mol~(-1),E_O=145.52 k J·mol~(-1),ln(A/s~(-1))=32.99,H5061.0 cm,D=7579 m·s~(-1),p=24.49 GPa。  相似文献   

17.
借助不同加热速率(β)的非等温DSC曲线离开基线的初始温度(To)、onset温度(Te)和峰顶温度(Tp),采用Kissinger法和Ozawa法求得热分解反应表观活化能(Ek和Eo)和指前因子(AK),Hu-Zhao-Gao方程求得beO(or pO),Zhao-Hu-Gao方程求得aeo(or pO),微热量法确定的比热容(Cp),以及密度(ρ)、热导率(λ)和分解热(Qd,取爆热之半)数据;根据Zhang-Hu-Xie-Li公式、HuYang-Liang-Xie公式、Hu-Zhao-Gao公式、Zha0-Hu-Gao公式、热力学关系式、Smith方程、Friedman公式、Bruckman-GuilIet公式、Frank-Kamenetskii公式和Wang-Du公式和Yoshida公式,计算了1,1'-二甲基-5,5'-偶氮四唑一水合物(1,1'-DMATZ)和2,2'-二甲基-5,5'-偶氮四唑(2,2'-DMATZ)在β→0时的To、Te和Tp值(Too、Teo和Tpo)、分解反应的活化热力学参量(△G≠、△H≠、△S≠)、热爆炸临界温度(Tbe和Tbp)、绝热至爆时间(tTlad)、撞击感度50%落高(H50)、热点起爆临界温度(Tcr,.hoto-spot)、热爆炸临界环境温度(Tacr)、热安全度(Sd)、热爆炸概率(PTE)、爆炸能力(Ep)和以间二硝基苯为基准的撞击敏感性(Ss).结果表明,(1)1,1'-DMATZ对热是稳定的;(2)1,1'-DMATZ对热的抵抗能力好于2,2'-DMATZ;(3)影响二甲基-偶氮四唑热安全的主要因素是甲基在分子中所处的位置.  相似文献   

18.
以二水合1,1'-二羟基-5,5'-联四唑(H2DHBT)和羟胺水溶液为原料,通过中和反应,采用原位结晶法在六硝基六氮杂异伍兹烷(CL-20)水悬浮液中制备了一种CL-20与1,1'-二羟基-5,5'-联四唑二羟胺盐(TKX-50,HATO)的复合物样品。采用扫描电子显微镜(SEM)、傅里叶变换红外图谱(FT-IR)、核磁共振(NMR)以及X射线衍射(XRD)表征了复合物的形貌和结构,研究了不同工艺条件对复合物样品形貌的影响;利用差示扫描量热技术(DSC)分析了其热性能,按GJB772A~(-1)997方法测试其撞击、摩擦感度;使用Urizar公式计算了其爆速。结果表明,获得附着完整均匀的CL-20/HATO复合物样品工艺条件为:反应温度90℃,反应时间10 min,羟胺水溶液的滴加速率为60 mL·min~(-1),制得的CL-20/HATO复合物样品中CL-20晶型未发生变化,由定量碳谱所得复合物质量比为m(CL-20)∶m(HATO)=55∶45;复合物存在两个放热分解峰,其峰温分别为238.3℃和250.7℃,特性落高为44.7 cm,撞击爆炸概率为52%,摩擦爆炸概率为76%;复合物样品的理论爆速为9516 m·s~(-1)。  相似文献   

19.
建立了二水合5,5'-联四唑-1,1'-二羟基(BTO)纯度的高效液相色谱分析条件:反相色谱柱(Sino Chrom ODS-BP,4.6 mm×200 mm,5μm),检测波长213 nm,二元流动相乙腈-水30/70(V/V),流速1.0 m L·min-1,柱温25℃。采用外标法对BTO标准溶液进行定量测定,BTO浓度(c)在0.12~0.60 mg·m L-1范围内与色谱峰峰高(h)呈良好的线性关系,线性方程为h=573.78c-1.18,线性相关系数为0.9998。该法的相对标准偏差为0.48%~1.00%,平均回收率为98.10%~100.64%,方法灵敏、准确,可用于BTO产品的纯度分析。  相似文献   

20.
张坤  陶俊  王晓峰  常静  毕福强  姜帆  杨雄 《含能材料》2019,27(11):908-914
为详细了解高氯酸铵(AP)对5,5'-联四唑-1,1'-二氧二羟铵(HATO)热分解影响的机制,采用热重-质谱-傅里叶红外光谱(TG-MS-FTIR)联用技术、差示扫描量热法(DSC)、傅里叶红外光谱(FTIR)方法,对HATO和HATO/AP共混物的热分解特性、气体产物以及凝聚相变化进行了研究。结果表明,HATO具有两个连续热分解阶段,HATO/AP共混物则有3个热分解阶段;HATO、AP共混后,HATO使得AP熔融峰消失,AP可使HATO的热分解初始温度提前,热分解时间延长且不影响分解完全性;HATO热分解气体产物有CO_2、N_2O、HCN、NH_3、NO、N_2、H_2O,而HATO/AP共混物热分解产生气体主要有N_2、CO_2、N_2O、HCN、NH_3、H_2O、HCN、NO、HCl、NOCl;另外,采用等转化率法计算HATO和HATO/AP共混物四唑环基团的活化能分别为53.38 kJ·mol~(-1)和60.69 kJ·mol~(-1);通过对比HATO和HATO/AP共混物热分解特性以及凝聚相特征基团的变化,阐释了AP使HATO热分解温度提前的机理很可能是:AP的铵根离子与HATO之间发生了质子转移;推测AP导致HATO热分解时间延长的原因为:HATO/AP共混物产生的NH_3与热分解中间体1,1'-二羟基-5,5-联四唑(BTO)反应生成5,5'-联四唑-1,1'-二氧铵盐(ABTOX)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号