首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 171 毫秒
1.
含硫天然气泄漏扩散的三维数值模拟   总被引:2,自引:2,他引:0  
研究燃气管道的泄漏,目的在于定性和定量地分析评价泄漏可能带来的危害。基于FLUENT软件,用GAMBIT建立三维泄漏模型,对含硫天然气管道泄漏及扩散进行了三维数值模拟。结果表明:硫化氢的存在增加燃气管道的泄漏危险区域;在自由扩散状态下,泄漏气体主要集中在泄漏口上部,且危险区域较小;当存在环境风时,泄漏危险区域向下风向下移,形成气体聚集区域,而上风向气体较少。可见,硫化氢和环境风的存在,使含硫天然气泄漏扩散的危险范围增大。  相似文献   

2.
给出了天然气管道泄漏几何区域图形,建立了天然气泄漏控制方程,基于控制体积原理和多孔介质理论,利用计算流体力学软件对埋地天然气管道泄漏过程进行了数值模拟。通过模拟,得到了天然气在土壤和空气中泄漏浓度分布,并分析了风速对天然气组分的扩散影响规律,确定了安全区域,为天然气管道泄漏应急救援和安全管理提供了理论依据。  相似文献   

3.
针对管道中天然气的泄漏,尤其是含硫集输管道的泄漏将对周围环境造成极大的威胁,对平坦地区含硫化氢天然气管道泄漏扩散进行了数值模拟.模拟分析发现:静风条件下,天然气在大气中自由扩散稳定后,压力、速度和浓度分布基本对称,喷口附近、喷口垂直向上区域以及接近地面区域的硫化氢浓度很高,属于高危险区域;有风条件下,气体扩散范围增大,风不仅对污染物起输送作用,还起稀释扩散作用,但在地面附近影响效果并不明显,而随高度的增加,其效果将不断增强;在无风情况下,喷射区域基本在泄漏口正上方,而有风时,喷射区域发生弯曲;危险区域随着风速的增大而减小,静风时,其范围最大.模拟得出天然气管道泄漏点外扩散的规律能够为实际安全生产和应急抢险提供较好的参考依据.  相似文献   

4.
受地质灾害、腐蚀缺陷、第三方破坏等因素的影响,油气管道在安全运输方面存在诸多隐患,因此研究埋地天然气管道泄漏扩散规律对泄漏点预测定位、应急预案制定具有重要的现实意义。通过对埋地天然气管道泄漏扩散过程进行数值模拟,分析了泄漏速度、风速以及环境温度对CH4体积分数的影响,总结了扩散规律。研究结果可为埋地天然气管道泄漏点准确定位及应急预案提供理论支撑。  相似文献   

5.
针对高原城市中压天然气管道泄漏情况,研究了多层、高层建筑物和风速对天然气管道泄漏和扩散的影响,利用CFD模拟计算软件分别对高原气压下中压A、中压B天然气管道的泄漏扩散进行数值模拟,并得到了泄漏后CH4的体积分数分布和危险区域。研究结果表明:高原城市中压A天然气管道泄漏孔处的质量流量与平原地区一致,不受气压影响,高原城市中压B天然气管道泄漏的危险区域随时间的增加保持不变或变小。  相似文献   

6.
随着我国天然气事业的发展,天然气管道规模也在不断扩大,与此同时也带来了安全上的隐患,城市天然气管道泄漏事故频繁发生,严重影响了城市居民的生命及财产安全。主要介绍了城市天然气管道泄漏数值仿真和数值模拟的基本理论,考虑泄漏过程中风场对泄漏的影响,分析了近地面处风场的变化,建立了埋地天然气管道泄漏模型。设定泄漏扩散发生在大气环境,选取CFD软件对网格进行划分并进行局部加密,进行了风场的稳态模拟。在风场达到稳态后,改变后处理边界条件,再对泄漏进行瞬态模拟,得出天然气泄漏扩散随时间的变化规律,定量分析了风速对泄漏扩散的影响。结果表明,建筑物对风场存在干扰,在泄漏过程中气体聚集在近地面及贴近建筑物周围,随着风速的增加,稳态扩散高度降低,但风场对水平扩散的影响较小,风速越大泄漏气体稀释效果越明显,所造成的危险区域越小。  相似文献   

7.
建立了天然气管道在空旷地面发生泄漏的三维模型,对高速泄漏区域进行了网格细化。利用 CFD商业软件 FLUENT 6.3对泄漏过程进行模拟,考察了大气风速、泄漏初速度和泄漏口形状(圆形和菱形)对泄漏的影响。模拟结果表明,风速对天然气泄漏喷射射流角度有较大影响,扩散范围随扩散高度而增大;泄漏初速度对天然气喷射高度有较大影响,扩散高度随泄漏初速度的加快而变高;圆形泄漏口的硫化氢泄漏范围最宽。研究结果对加深长输天然气管道泄漏扩散规律的认识、事故的预防具有一定的意义。  相似文献   

8.
针对城镇架空天然气管道动态泄漏问题,考虑不同压力等级对泄漏扩散的影响,选取高压(2.0 MPa)、次高压(1.0MPa)和中压(0.4MPa)3个压力等级管道进行模拟。先利用泄漏率计算模型分别计算临界流和亚临界流泄漏的泄漏率,得到不同压力等级管道的泄漏规律;再利用Fluent软件对动态泄漏进行数值模拟,得到天然气扩散的危险范围。结果表明,当管道体积和泄漏孔径一定时,管内压力越大,管内剩余气体质量越大,泄漏持续时间越长,天然气的危险范围也越大;随着动态泄漏的持续,泄漏率越来越小,天然气的危险范围也越来越小。天然气爆炸下限距地面高度和下风向水平距离随时间变化总体呈下降趋势,但高压(2.0MPa)管道在下风向水平方向的距离先增加再减小。  相似文献   

9.
根据某高硫气田阀室设计参数得到最大气体泄漏量;同时利用获得的气象参数及周围地形的相关数据,采用基于CFD的事故模拟软件Fluidyn-PANACHE对复杂地形下的风场及含硫天然气的泄漏扩散过程进行数值模拟;分析风速、风向及高度对硫化氢扩散的影响;并得到不同风向下不同浓度的有毒气体可能的影响范围,将可能影响范围与应急预案相结合,更好地实现管道阀室突发事件的应急处置。  相似文献   

10.
架空天然气管道泄漏扩散数值模拟   总被引:4,自引:3,他引:1  
针对天然气管道穿孔泄漏扩散问题,结合有限容积法,建立了天然气管道不同泄漏位置的CFD仿真模型,分别对天然气管道上部、下部、迎风侧及背风侧等4种工况的泄漏扩散进行了数值模拟。研究结果表明,下部泄漏比上部泄漏气体更贴近地面且不易扩散,且横向危险范围也比上部泄漏大30~70m;迎风侧泄漏与背风侧泄漏情况相似,但迎风侧泄漏危险区域的纵剖面面积更大,更危险。应用数值方法模拟管道穿孔扩散问题,给出了不同工况下的泄漏范围,为天然气管道泄漏的安全输送及安全抢修提供了理论依据。  相似文献   

11.
针对35MPa超高压输气管道在人口密集区域泄漏扩散问题,采用FLUENT软件,对不同气候条件下的埋深天然气管道泄漏情况进行了三维数值模拟,并给出了超高压天然气在不同风速条件下泄漏后H2S和CH4轴向和地表安全区域。在扩散过程中,天然气在浮力的作用下以向上扩散的形式发展,在不同的环境下风速和压力对扩散过程的影响不同,较大的风速和压力使天然气向更远的距离扩散,从而增大天然气爆炸下限和警戒浓度范围。研究结果可为泄漏现场人员和安全管理提供有效依据。  相似文献   

12.
针对城镇埋地天然气管道泄漏扩散过程, 考虑多建筑物条件下不同组分、 不同浓度的气体扩散规律, 利用计算流体力学( CFD) 软件建立埋地管道泄漏扩散过程的三维物理模型, 将环境风场和泄漏速率以用户自定义函数形式引入边界条件中, 将模拟过程分为环境风场的稳态模拟和泄漏扩散的瞬态模拟两步, 又将泄漏扩散过程分为持续泄漏扩散和管道阀门关闭后的泄漏扩散两个阶段, 分析天然气的泄漏扩散规律。结果表明, 环境风场的稳态模拟是十分必要的, 建筑物附近流场存在三个低速区, 建筑物边缘存在较大的速度梯度; 天然气的持续泄漏扩散阶段呈现土壤层局限扩散、 上游低速区积聚、 气云浮升、H2S的沉积扩散等特征, 在阀门关闭后的阶段呈现气体扩散延续性、 气云由上而下消散等特点; 在本文工况条件下, H2S比CH4的扩散范围大, 消散时间晚, 危险性更大。  相似文献   

13.
硫化氢是石油、天然气中的主要含硫组分,具有剧毒、强腐蚀性与恶臭气味。随着高硫原油加工的增长,其存在不仅会引起设备和管道腐蚀,催化剂中毒,而且还严重威胁人身安全。因此,寻求经济、有效的硫化氢脱除技术,尤其是可同时实现硫回收的资源化工艺,一直是研究者和工业界关注的问题。笔者采用湿法氧化技术,通过适量NaCl溶液电解产生的氧化物氧化原油中的H2S,使之转化为硫或高价硫酸盐,以达到去除原油中硫化氢的目的。  相似文献   

14.
将氢气掺入现役天然气管道中混输是实现氢气大规模、长距离、低成本储运的有效方法,但是氢气的掺入会对天然气管道水力特性和安全等方面造成较大影响。为此,采用SPS软件对不同混氢比(均为摩尔分数)的天然气管道输送工况和泄漏工况进行仿真计算,探究掺氢对天然气管道水力特性、离心压缩机运行特性、泄漏后截断阀压降速率及泄漏量的影响。结果表明,掺入氢气会降低天然气管网的输气效率和压缩机性能,可通过增大压降的方式确保管道输气效率不变;在相同天然气需求下,随混氢比的增大,管道动态压力波动减小;掺氢天然气管道泄漏后,随着混氢比的增加,压降速率和泄漏量均增大,管线截断阀压降速率阈值设定值也要相应增大。该研究成果为确定天然气管道最大混氢比的研究奠定了一定基础,为天然气管道掺氢输送工艺的确定提供了有效借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号