首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
固相反应法合成Sr3Al2O6:Eu3+红色荧光材料   总被引:3,自引:0,他引:3  
稀土离子激活的铝酸盐发光材料具有优良的性能和较低的成本,但目前还缺少红色发光材料。文章利用高温固相反应法在1200℃合成了Sr3Al2O6:Eu^3+红色荧光材料,该材料有两个位于250nm和295nm附近的宽谱激发峰,能高效率吸收紫外光,发射出590nm、620nm、655nm、703nm的红色荧光,是一种发光强度较高的红色荧光材料。  相似文献   

5.
采用高温固相法结合电荷补偿方式2Sr2+→Eu3+ +Na+,合成了适合白光LED的红色荧光材料NaxSr1-2x MoO4:Eu3+x(x=0.1、0.15、0.2,0.25、0.3)系列样品.对样品分别进行了X射线衍射(XRD)分析和荧光光谱的测定.测试结果表明,NaxSr1-2xMoO4:Eu3+x荧光粉可以被近紫外光(UV)(393 nm)和蓝光(463 nm)有效激发.通过探讨Na+和Eu3+的掺杂浓度对发光强度的影响,得出NaxSr1-2xMoO4:Eu3+x系列样品的发光强度比SrMoO4:Eu3+明显增加,且当掺杂量x=0.2时,NaxSr1-2xMoo4:Eu3+x系列样品在616 nm处的发光强度最大.分析了NaxSr1-2xMoO4:Eu3+x系列样品在380 nm紫外光激发下的色坐标,当Na+和Eu3+的掺杂量x=0.15时,样品的红色显色最强.  相似文献   

6.
采用沉淀法合成了YVO4:Eu3+,Bi3+荧光粉,利用XRD,SEM和TEM对样品的结构和形貌进行表征,并用荧光光谱仪测试了样品的激发和发射光谱。X射线衍射图分析表明,所制得的荧光粉与YVO4的物相一致,样品属于体心四方相。其扫描电镜和透射电镜照片显示颗粒为纺锤形,大小比较均匀,长径为250nm左右,短径为100nm左右。在275nm近紫外光激发下,该荧光粉的发光峰分别归属于Eu3+的5 D0→7 F1(596nm),5 D0→7F2(617nm,621nm),5 D0→7F3(654nm),5 D0→7F4(702nm)辐射跃迁。最强发射位于617nm左右,属于红光。研究了Eu3+浓度对样品发光强度的影响。随着Eu3+浓度的增加,发射峰强度增大,当Eu3+摩尔分数为12%时,峰值强度最大。Bi3+对Eu3+的发光有一定的敏化作用,当Bi3+摩尔分数达到5%时,敏化作用最强。  相似文献   

7.
运用高温固相法合成SrBPO_5∶Ho~(3+),用X射线衍射仪(XRD)、能谱仪(EDS)以及荧光光度计(PL)对合成产物的结构、组成和发光性质进行了研究。结果表明:少量掺杂Ho不会影响基质的晶体结构,Ho均匀分布在基质材料中;荧光材料呈现出Ho3+的特征发射,发光区域在绿色区域,当掺杂量为0. 03 mol时发射强度最大;掺杂后计算得到SrBPO_5∶Ho~(3+)的VBM和CBM之间的带隙值为5. 53 e V,相对掺杂前略微减少,且SrBPO_5∶Ho~(3+)体系属于直接带隙结构,有利于发光; Ho的掺杂在费米能级附近引起杂质能级。  相似文献   

8.
用溶胶凝胶法合成GdAl3(BO3)4:Eu3 红色荧光粉.晶化温度为960℃,晶化时间为2 h;用X射线衍射进行结构表征,并用Jade5程序对GdAl3(BO3)4:Eu3 粉末样品的X射线衍射数据进行了指标化.结果表明:GdAl3(BO3)4:Eu3 为六方晶系,晶胞参数a=9.299 2 nm,c=7.257 7 nm;荧光性能测试结果为:室温613 nm监测,其激发光谱峰为:270,391,400,472,542,728,766和791nm.在270 nm激发下,最大发射峰为613 nm.  相似文献   

9.
以硅酸盐为基质,通过低温燃烧法合成了Sr2SiO4:Dy3+高亮度白光LED用荧光粉。利用XRD和荧光光谱研究合成的荧光粉的结构特性和发光性能。结果表明:合成的荧光粉为斜方晶系,物相较纯。随着Dy3+掺杂浓度的增加,荧光粉的结构没有发生破坏,光谱的形状也没有发生改变。当Dy3+的掺杂浓度为2%,电荷补给剂LiOH的掺杂浓度为5%时,合成的荧光粉发光性能最佳。荧光粉可被352nm的紫外光有效激发,同时发出蓝光和橙光,混合后获得白光。  相似文献   

10.
采用高温固相法制备了Ca_(1.9)(Si_(0.8)P_(0.2))O_4:Re(Re=Eu~(2+),Eu~(3+))系列发光材料,并对光致发光性能的影响因素进行了探究,主要包括煅烧温度、煅烧时间、稀土离子掺杂浓度等。经表征分析可知,制备Ca_(1.9)(Si_(0.8)P_(0.2))O_4:Eu~(2+)样品工艺条件确定为:煅烧温度、时间及掺杂Eu~(2+)浓度分别为1 275℃、4 h及4%。此样品最强激发波长为374 nm,最强发射波长为500 nm。色坐标结果显示样品发光处于绿光区域。制备Ca_(1.9)(Si_(0.8)P_(0.2))O_4:Eu~(3+)样品工艺条件确定为:煅烧温度、时间及掺杂Eu~(3+)浓度分别为1 300℃、4 h及6%。此样品最强激发波为394 nm,最强发射波长为589 nm。色坐标结果显示样品发光处于红光区域。  相似文献   

11.
采用高温固相法在空气气氛中制备了具有NASICON结构的Eu3+掺杂Na3Zr2Si2PO12:Eu3+红色荧光粉。利用X射线衍射、漫反射光谱、荧光光谱、荧光寿命衰减曲线以及量子效率系统研究了该样品的晶体结构及荧光性能。结果表明,样品XRD图中不含明显的杂峰,表明在实验浓度范围内Eu3+的掺杂没有改变基质的晶体结构,样品为单相。合成过程中,需要对样品多次压片烧结,才能获得较好的单相。在近紫外光激发下,样品能发出618 nm红光,荧光强度最大对应的Eu3+的掺杂摩尔分数是24%。根据Rexter理论分析,浓度猝灭源于Eu3+离子之间的电四极-电四极相互作用。样品在室温下的最高内量子效率和外量子效率分别是61%和15%,荧光衰减的寿命范围在2.08~2.84 ms。样品Na2.76Zr2Si2PO12:0.24 Eu3+在150℃时内量子效率约为50%,表明样品具有良好的热稳定性。将样品Na2.76Zr2Si2PO12:0.24 Eu3+与394 nm波长的紫外芯片封装成LED灯,显色指数达到75.6.Eu3+掺杂Na3Zr2Si2PO12有望作为一种新型红色荧光粉用于近紫外激发白光LED。  相似文献   

12.
采用高温固相反应在还原气氛中合成Ba_(1.3)Ca_(0.7-y-z)(Al_xSi_(1-x))O_4:yEu~(2+),zMn~(2+)白光荧光粉.研究硅铝摩尔比变化对荧光粉晶体结构和光谱性能的影响.XRD结果表明:改变硅铝摩尔比对荧光粉晶体结构基本无影响,晶相结构为Ba_(1.3)Ca_(0.7)SiO_4;荧光光谱显示在277 nm紫外光激发下,Eu~(2+),Mn~(2+)共掺杂的荧光粉的发射光谱覆盖425~550 nm蓝绿光波带和550~650 nm橙红光波带,最大发射峰位于454、593 nm,这两个发射宽带组合形成白光.  相似文献   

13.
采用高温固相法制备了YAG:Ce~(3+)荧光粉,通过XRD、SEM和荧光光谱等对样品进行了分析。系统地研究了不同种类助熔剂、烧结温度、时间对YAG:Ce~(3+)荧光粉结构、形貌及发光性能的影响。通过调节助熔剂、烧结温度和时间等工艺参数,在不经过破碎、后处理工艺的条件下,制备出了形貌规则、粒度分布均匀、发光性能优良的YAG:Ce~(3+)荧光粉。研究发现在1600℃,保温5个小时,以BaF_2作为助熔剂的条件下,样品的形貌及发光性能均达到最好。  相似文献   

14.
采用水热法经不同反应条件合成NaGdF_4:Er~(3+),Yb~(3+)上转换发光粉.通过X射线衍射(XRD)、电子扫描电镜(SEM)和上转换发射光谱对样品进行表征.XRD研究结果表明:稀土离子与Na F的摩尔比例和反应时间对六方结构的Na Gd F_4晶相的形成有影响.SEM研究结果说明:稀土离子与Na F的摩尔比例改变,样品的形貌也随着改变.上转换发射光谱结果表明:上转换绿光与红光分别来自Er~(3+)的~2H_(11/2),~4S_(3/2)与~4F_(9/2)到~4I_(15/2)的能级跃迁产生的,且样品的绿光上转换发射强度强于红光.随着稀土离子与Na F的摩尔比例增大,绿光与红光的上转换发射强度也随着增强,说明不同形貌的样品影响着样品的发光性能.  相似文献   

15.
采用水热法制备了四方相YVO4:Eu3+纳米荧光粉,研究了YVO4:Eu3+晶体结构、发光特性及荧光温度特性.XRD结果表明合成的YVO4:Eu3+荧光粉与基质YVO4的晶相结构一致.发光光谱表明,在398 nm激发下显示了Eu3+离子的4f-4f特征跃迁红光发射.在303~623 K温度区间,发光峰位没有发生变化,各特征峰强度均显示出温度依赖性.采用荧光强度比技术,分别基于热耦合能级到相同基态的跃迁(5D1→7F1和5D0→7F1)、热耦合能级到不同基态的跃迁(5D1→7F1和5D0→7F4)及到Stark能级(5D0→7F4(1)和5D0→7F4(2))跃迁,研究其荧光温度特性.结果表明,在623 K时基于热耦合能级到相同基态跃迁(5D1→7F1和5D0→7F1)可获得最大测温灵敏度为2.55×10-3 K-1,大于基于热耦合能级到不同基态能级(5D1→7F1和5D0→7F4)时获得的最大灵敏度为1.08×10-3 K-1;而基于热耦合能级到Stark能级跃迁(5D0→7F4(1)和5D0→7F4(2))可在303 K时获得最大灵敏度为5.03×10-4 K-1.说明基于热耦合能级荧光强度比技术更适合用于高温条件,测温灵敏度决定于热耦合能级差,与到达基态能级无关.而低温条件下,基于Stark能级荧光强度比可获得较高的测温灵敏度,测温灵敏度决定于Stark能级差.  相似文献   

16.
采用溶胶-凝胶法,以柠檬酸为络合剂,乙二醇为螯合剂合成了YAG:Ce3+超细荧光粉.利用X射线衍射、电镜和荧光光谱等测试手段时合成的YAG:Ce3+样品的结构、形貌和发光性质进行了研究.XRD图谱结果表明:所有样品均为立方相.根据Scherrer公式计算,900℃、1000℃和1100℃热处理后样品晶粒的平均粒径分别为69nm、72 nm和89 nm.粒子的粒径和衍射峰强度随热处理温度的提高而增大和增强.激发光谱由位于345 nm的弱激发带和位于470 nm强的激发带组成.发射光谱是位于530 nm左右的宽的发射带,归属于Ce3+离子的5d→4f跃迁.激发和发射强度随热处理温度的提高而增强.  相似文献   

17.
利用金属(Au-Al)作为催化剂,基于固-液-固生长机制,在单晶Si(100)表面生长出高密度、大面积的Si纳米线(SiNWs).为了提高SiNWs∶Eu3+的红光发射强度,高温下利用Y3+、Eu3+共掺杂Si纳米线,制备了荧光纳米材料SiNWs∶Eu3+,Y3+.利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和...  相似文献   

18.
为了提高单结非晶硅太阳能电池的光电转换效率,缓解日益严重的能源和环境问题,采用高温固相法制备了稀土离子Yb3+和Ho3+共掺的NaYF4上转换粉体,并对其进行了X射线衍射测试、扫描电镜以及光致发光测试。对Yb3+和Ho3+共掺的NaYF4上转换发光材料在热处理工艺下的变化进行了研究,分析了表面形貌和相结构对上转换发光性能的影响。发现在980 nm近红外光的激发下,共产生3个发射峰,中心波长分别位于541、649、750 nm,为非晶硅太阳能电池的最佳响应波段,表明该材料可应用于非晶硅太阳能电池提升其电池效率。进一步研究表明:可通过改变退火温度来改变样品的表面形貌和相结构,进而大幅度提高样品的上转换发光性能。在退火温度为700益时,样品呈标准六方相结构、表面致密、粒径均匀、上转换性能提高近40倍。  相似文献   

19.
采用高温熔融法,将Eu3+掺杂的P2O5-Ba O-Na2O-K2O-Y2O3系统玻璃,在不同的温度下进行热处理,制备出Eu3+:YPO4的微晶玻璃.利用X射线衍射仪、扫描电子显微镜、荧光光谱仪等对微晶玻璃样品的晶相、微观形貌和光谱性能进行测试、研究.结果表明:基础玻璃在750℃热处理1 h可以得到纯相的Eu3+:YPO4的微晶玻璃,该微晶玻璃在225 nm波长的激发下,位于594 nm处Eu3+的5D0—7F1跃迁发射最强,并随着热处理温度的升高,微晶玻璃的发光强度逐渐增强.  相似文献   

20.
用高温固相法制备掺镁的CaTiO3:pr^3+红色长余辉发光材料,并测试材料的激发光谱、发射光谱和余辉衰减曲线.研究Pr^3+、MgO和H3PO3的不同掺入量对CaTiO3:Pr^3+红色发光材料的发光性能的影响.XRD分析表明,所合成的样品为MgCaTiO3正交晶系的晶体结构.发射光谱峰值位于614nm,对应了Pr^3+的1↑D23↑F4跃迁,研究发现,在还原气氛下,掺入35%(摩尔分数,以下同)的MgO,65%的CaCO3,0.125%的Pr^3+,10%的H3BO3,1200℃下反应2h,所得的掺镁的CaTiO3:Pr^3+红色长余辉发光材料的发光性能最好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号