首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytokines such as interleukin-1 beta (IL-1 beta) are released in the nervous system following inflammation or infection. Recently, IL-1 beta was shown to enhance synaptic inhibitory mechanisms. We therefore investigated the effect of IL-1 beta superfusion on long-term potentiation (LTP), the cellular model of memory and learning, evoked in the CA1 region by tetanic stimulation of the stratum radiatum in the rat hippocampal slice. IL-1 beta (150 pM-1.5 nM) superfused 10 min before tetanic stimulation significantly reduced LTP of the slope of the population excitatory postsynaptic potential (pEPSP) and the population spike (PS) amplitude in CA1 in a concentration-dependent manner. IL-1 beta (1.5 nM) applied for 10 min 1 h before tetanus significantly inhibited LTP of the PS amplitude and pEPSP slope and reduced pEPSP and PS values before tetanus as well, although the PS returned to control values before tetanus. Heat-inactivated IL-1 beta had no effect on pre-tetanus pEPSP or PS values or the induction of LTP. These data demonstrate that IL-1 beta modulates synaptic potentials and reduces LTP. These findings have important implications for the role of IL-1 beta in neuronal disorders following infection, perhaps best exemplified by HIV-1-associated dementia.  相似文献   

2.
It is difficult to induce long-term potentiation (LTP) in CA1 of hippocampal slices from 120-day-old rats when a single 100 Hz, 1 s tetanus is administered in extracellular solution containing 2.0 mM calcium and 2.0 mM magnesium. However, in the presence of 2.5 mM calcium and 1.3 mM magnesium LTP is reliably induced by this same stimulus. Although the amplitude of LTP is similar to that observed in slices from 30-day-old rats, LTP in slices from mature rats is not inhibited by MK-801 but is blocked by nifedipine. These results suggest that factors contributing to LTP in slices from mature rats require careful consideration under different experimental paradigms.  相似文献   

3.
Long-term potentiation (LTP) is an activity-dependent strengthening of synaptic efficacy that is considered to be a model of learning and memory. Protein tyrosine phosphorylation is necessary to induce LTP. Here, induction of LTP in CA1 pyramidal cells of rats was prevented by blocking the tyrosine kinase Src, and Src activity was increased by stimulation producing LTP. Directly activating Src in the postsynaptic neuron enhanced excitatory synaptic responses, occluding LTP. Src-induced enhancement of alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) receptor-mediated synaptic responses required raised intracellular Ca2+ and N-methyl-D-aspartate (NMDA) receptors. Thus, Src activation is necessary and sufficient for inducing LTP and may function by up-regulating NMDA receptors.  相似文献   

4.
We describe a series of 144 cases of leptospirosis diagnosed in 1989 in New Caledonia. The incidence rate was 90 per 100,000 person-years, with a specific mortality rate of 4% patients. Those affected (100 males, 44 females) were mainly aged 20 to 40 years. Incidence in rural areas (112 per 100,000 person-years) was seven times higher than in urban settlements. Two periods with higher incidence were noticed corresponding to highest rainfall. Twenty-nine of the cases occurred in individuals with professions commonly associated with leptospirosis. Contacts with rats, dogs and ditch or river water were the most frequently mentioned. The clinical expression of the disease was polymorphic: 60% of the patients had mild symptoms, 40% were acute forms including Weil's disease. Of 57 hospitalized, 23% were admitted with an initial diagnosis of dengue, and 37% with leptospirosis. Main clinical syndromes were: icterus and/or renal syndrome in 50% of patients, cardiac syndrome in 65%, acute myalgies in 58% and pulmonary syndrome in 50%. Although hemorrhages were uncommon (17%), 40% of the cases demonstrated thrombocytopenia (< 50,000/m3). Pancreatic involvement with hyperamylasemia was evidenced in 50% of cases. Twelve serogroups of Leptospira were implicated, Icterohaemorragiae predominated (41%), but was not associated with severe forms. In New Caledonia, like in all tropics, leptospirosis must be considered as an environmental diseases, professional activities being just an additional risk factor. Use of serology as a reliable tool for confirmation of cases in areas of high environmental contamination is discussed.  相似文献   

5.
Long-term depression of synaptic transmission was induced following the prior induction of long-term potentiation in the CA1 region of rat hippocampal slices. We show that the induction of this form of synaptic depression can be prevented by (+)-alpha-methyl-4-carboxyphenylglycine, a selective antagonist of metabotropic glutamate receptors.  相似文献   

6.
To investigate the mechanism of generation of the hypoxia-induced hyperpolarization (hypoxic hyperpolarization) in hippocampal CA1 neurons in rat tissue slices, recordings were made in current-clamp mode and single-electrode voltage-clamp mode. Superfusion with hypoxic medium produced a hyperpolarization and corresponding outward current, which were associated with an increase in membrane conductance. Reoxygenation produced a further hyperpolarization, with corresponding outward current, followed by a recovery to the preexposure level. The amplitude of the posthypoxic hyperpolarization was always greater than that of the hypoxic hyperpolarization. In single-electrode voltage-clamp mode, it was difficult to record reproducible outward currents in response to repeated hypoxic exposure with the use of electrodes with a high tip resistance. The current-clamp technique was therefore chosen to study the pharmacological characteristics of the hypoxic hyperpolarization. In 60-80% of hippocampal CA1 neurons, glibenclamide or tolbutamide (3-100 microM) reduced the amplitude of the hypoxic hyperpolarization in a concentration-dependent manner by up to approximately 70%. The glibenclamide or tolbutamide concentrations producing half-maximal inhibition of the hypoxic hyperpolarization were 6 and 12 microM, respectively. The chord conductance of the membrane potential between -80 and -90 mV in the absence of glibenclamide (30 microM) or tolbutamide (100 microM) was 2-3 times greater than that in the presence of glibenclamide or tolbutamide. In contrast, the reversal potential of the hypoxic hyperpolarization was approximately -83 mV in both the absence and presence of tolbutamide or glibenclamide. In approximately 40% of CA1 neurons, diazoxide (100 microM) or nicorandil (1 mM) mimicked the hypoxic hyperpolarization and pretreatment of these drugs occluded the hypoxic hyperpolarization. When ATP was injected into the impaled neuron, hypoxic exposure could not produce a hyperpolarization. The intracellular injection of the nonhydrolyzable ATP analogue 5'-adenylylimidodiphosphate lithium salt reduced the amplitude of the hypoxic hyperpolarization. Furthermore, application of dinitrophenol (10 microM) mimicked the hypoxic hyperpolarization, and the dinitrophenol-induced hyperpolarization was inhibited by either pretreatment of tolbutamide or intracellular injection of ATP, indicating that the hypoxic hyperpolarization is highly dependent on intracellular ATP. It is therefore concluded that in the majority of hippocampal CA1 neurons, exposure to hypoxic conditions resulting in a reduction in the intracellular level of ATP leads to activation of ATP-sensitive potassium channels with concomitant hyperpolarization.  相似文献   

7.
The mechanisms responsible for long-lasting, activity-dependent decreases in synaptic efficacy are not well understood. We have examined the initial steps required for the induction of long-term depression (LTD) in CA1 pyramidal cells by repetitive low frequency (1 Hz) synaptic stimulation. This form of LTD was synapse specific, was saturable, and required activation of post-synaptic NMDA receptors. Loading CA1 cells with the Ca2+ chelator BAPTA prevented LTD, whereas lowering extracellular Ca2+ resulted in the induction of LTD by stimulation that previously elicited long-term potentiation. Following LTD, synaptic strength could be increased to its original maximal level, indicating that LTD is reversible and not due to deterioration of individual synapses. Induction of homosynaptic LTD therefore requires an NMDA receptor-dependent change in postsynaptic Ca2+ which may be distinct from that required for long-term potentiation.  相似文献   

8.
Long-term potentiation (LTP) of the Schaffer collateral/commissural inputs to CA1 in the hippocampus was shown to consist of N-methyl-D-aspartate receptor (NMDAR) and voltage-dependent calcium channel (VDCC) dependent forms. In this study, the relative contributions of these two forms of LTP in in vitro hippocampal slices from young (2 mo) and old (24 mo) Fischer 344 rats were examined. Excitatory postsynaptic potentials (EPSP) were recorded extracellularly from stratum radiatum before and after a tetanic stimulus consisting of four 200-Hz, 0.5-s trains given 5 s apart. Under control conditions, a compound LTP consisting of both forms was induced and was similar, in both time course and magnitude, in young and old animals. NMDAR-dependent LTP (nmdaLTP), isolated by the application of 10 microM nifedipine (a voltage-dependent calcium channel blocker), was significantly reduced in magnitude in aged animals. The VDCC dependent form (vdccLTP), isolated by the application of 50 microM D,L-2-amino-5-phosphonvalerate (APV), was significantly larger in aged animals. Although both LTP forms reached stable values 40-60 min posttetanus in young animals, in aged animals vdccLTP increased and nmdaLTP decreased during this time. In both young and old animals, the sum of the two isolated LTP forms approximated the magnitude of the compound LTP, and application of APV and nifedipine or genestein (a tyrosine kinase inhibitor) together blocked potentiation. These results suggest that aging causes a shift in synaptic plasticity from NMDAR-dependent mechanisms to VDCC-dependent mechanisms. The data are consistent with previous findings of increased L-type calcium current and decreased NMDAR number in aged CA1 cells and may help explain age-related deficits in learning and memory.  相似文献   

9.
The muscarinic acetylcholine receptor antagonist scopolamine, but not the beta-adrenoceptor antagonist propranolol or atenolol, suppressed tetanus-induced long-term potentiation (LTP) of population spikes in the rat hippocampal CA1 region. When scopolamine was coapplied with propranolol or atenolol, a synergistic effect in preventing LTP generation was observed. On the other hand, the coapplication of scopolamine and atenolol failed to affect tetanus-induced LTP of field EPSP. These findings suggest that cooperative mechanisms via muscarinic and beta-adrenergic receptor activation might contribute to LTP induction in terms of the EPSP-spike potentiation, i.e., an increase in the excitability of hippocampal CA1 pyramidal cells after tetanic stimulation, but are independent of the tetanus-evoked potentiation of a synaptic component.  相似文献   

10.
It has been demonstrated in the CA1 region of the hippocampus in vitro, and in the dentate gyrus and CA1 region in vivo, that application of the metabotropic glutamate receptor (mGluR) agonist, 1S, 3R-amino cyclopentane 2,3-dicarboxylic acid triggers a slow-onset potentiation of synaptic transmission in the hippocampus. This study examined the involvement of group 1 and 2 mGluRs in this phenomenon in the CA1 region of freely moving rats. Drugs were applied via the lateral cerebral ventricle, and measurements were obtained from the CA1 region via permanently implanted electrodes. The group 1 mGluR agonists, 3,5-dihydroxyphenylglycine (DHPG, 20-100 nmol/5 microl) and trans-azetidine-2,4-dicarboxylic acid (ADA, 100 nmol-1 micromol/5 microl) induced a dose-dependent potentiation of basal synaptic transmission. The mGluR antagonist R,S-alpha-methyl-carboxyphenylglycine (MCPG, 1 micromol), and the group 1 mGluR antagonist, S-4-carboxyphenylglycine (4CPG, 100 nmol) completely inhibited the effects of both DHPG and ADA. The group 2 mGluR agonist, (S)-4-carboxy-3-hydroxy phenylglycine (4C3H-PG, 50-200 nmol/5 microl) induced a dose-dependent decrease of basal synaptic transmission. These results suggest that in the CA1 region in vivo, slow-onset potentiation may be mediated by group 1 mGluRs.  相似文献   

11.
In the hippocampus, the neuromodulatory role of adenosine depends on a balance between inhibitory A1 responses and facilitatory A2A responses. Since the presynaptic effects of hippocampal inhibitory A1 adenosine receptors are mostly mediated by inhibition of Ca2+ channels, we now investigated whether presynaptic facilitatory A2A adenosine receptors would modulate calcium influx in the hippocampus. The mixed A1/A2 agonist, 2-chloroadenosine (CADO; 1 microM) inhibited veratridine (20 microM)-evoked 45Ca2+ influx into hippocampal synaptosomes of the CA1 or CA3 areas by 24.2 +/- 4.5% and 17.2 +/- 5.8%, respectively. In the presence of the A, antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 100 nM), the inhibitory effect of CADO (1 microM) on 45Ca2+ influx was prevented in CA1 synaptosomes, but was converted into a facilitatory effect (14.2 +/- 6.7%) in CA3 synaptosomes. The A2A agonist, CGS 21680 (3-30 nM) facilitated 45Ca2+ influx in CA3 synaptosomes, with a maximum increase of 22.9 +/- 3.9% at 10 nM, and was virtually devoid of effect in CA1 synaptosomes. This facilitatory effect of CGS 21680 (10 nM) in CA3 synaptosomes was prevented by the A2A antagonist 8-(3-chlorostyryl)caffeine (CSC; 200 nM), but not by the A1 antagonist, DPCPX (20 or 100 nM). The facilitatory effect of CGS 21680 on 45Ca2+ uptake by CA3 synaptosomes was prevented by the class A calcium channel blocker, omega-agatoxin-IVA (200 nM). These results indicate that presynaptic adenosine A2A receptors facilitate calcium influx in the CA3 but not the CA1 area of the rat hippocampus through activation of class A calcium channels.  相似文献   

12.
The opioid peptides represent a major class of neurotransmitter in the vertebrate nervous system and are prevalent in the hippocampus. There is considerable interest in the physiological function of the opioids contained in the mossy fiber pathway. The release of opioids from mossy fibers shows a strong frequency dependence. Long-term potentiation (LTP) at this synapse, an NMDA receptor-independent form of LTP, also depends on high-frequency synaptic activity, and this has led to speculation that endogenous opioids may be a critical factor in LTP induction. Previous reports using extracellular recordings have provided evidence for and against a role for opioids in mossy fiber LTP. Using single-cell recording techniques, we have tested the hypothesis that endogenous opioids are required for mossy fiber LTP induction. We recorded from a defined population of synapses that had EPSCs with fast rise times, short latencies, and monophasic decays, consistent with a proximally terminating synapse. The opioid antagonist naloxone prevented mossy fiber LTP in the rat, but had no effect on the commissural/associational system, a nonopioid-containing pathway. The action of naloxone was not mediated through disinhibition because GABAA receptors were pharmacologically blocked in these experiments. We also tested the hypothesis that variations in postsynaptic receptor subtype distribution between species might explain previous controversies regarding the role of endogenous opioids. In contrast to the rat, LTP of the mossy fiber field potential in guinea pig was not blocked by naloxone. Our data suggest that opioids may be the presynaptically released, frequency-dependent, associative factor for mossy fiber LTP induction.  相似文献   

13.
1. The effect of serotonin (5-hydroxytryptamine; 5-HT) on the induction of long-term potentiation (LTP) in rat visual cortex was investigated by using slice preparations in vitro. 2. Bath application of 5-HT (0.1-10 microM) did not affect the baseline synaptic potentials evoked by single-pulse test stimulation, but inhibited the induction of LTP in a concentration-dependent manner. 3. The effect of 5-HT was blocked by the 5-HT1 receptor antagonist pindolol or the 5-HT2,7 receptor antagonist ritanserin, but not by the 5-HT3,4 receptor antagonist MDL72222. 4. These results suggest that 5-HT plays a role in suppressing the induction of LTP in the rat visual cortex.  相似文献   

14.
Several forms of long-term potentiation (LTP), a putative cellular mechanism for memory storage, have been described in the hippocampus. In this review, I discuss the mechanisms of induction and expression of LTP at the Schaffer collateral synapses and at the mossy fiber pathway. The early biochemical steps responsible for LTP at these two pathways are well understood. However, future studies should transcend the study of signal transduction systems and focus on the identification of the synaptic proteins that experience activity-dependent modifications, ultimate effectors of the plastic changes.  相似文献   

15.
Associative long-term potentiation (LTP) and depression of compound and unitary CA3-CA excitatory postsynaptic potentials (EPSPs) were investigated in rat hippocampal slice cultures. The induction of LTP with synchronous pairing of synaptic activation and postsynaptic depolarization resulted in an increase in the amplitude of EPSPs to the same absolute level, regardless of whether the input was naive or had been previously depressed by asynchronous pairing of pre- and postsynaptic activity. Saturated LTP of compound and unitary EPSPs was reversed by asynchronous pairing and could be reinduced by synchronous pairing. The likelihood that an action potential in a presynaptic CA3 cell failed to trigger an unitary EPSP in a postsynaptic CA1 cell decreased after induction of associative potentiation and increased after induction of associative depotentiation. These changes in the rate of transmission failures were accompanied by large changes in the amplitude of nonfailure EPSPs. We conclude that the same CA3-CA1 synapses can alternatively undergo associative potentiation and depression, perhaps through opposite changes in a single expression mechanism.  相似文献   

16.
1. The depression of synaptic transmission by the specific metabotropic glutamate receptor (mGlu) agonist (1S, 3R)-1-aminocyclopentane-1,3-dicarboxylate ((1S,3R)-ACPD) was investigated in area CA1 of the hippocampus of 4-10 week old rats, by use of grease-gap and intracellular recording techniques. 2. In the presence of 1 mM Mg2+, (1S,3R)-ACPD was a weak synaptic depressant. In contrast, in the absence of added Mg2+, (1S,3R)-ACPD was much more effective in depressing both the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptor-mediated components of synaptic transmission. At 100 microM, (1S,3R)-ACPD depressed the slope of the field excitatory postsynaptic potential (e.p.s.p.) by 96 +/- 1% (mean +/- s.e.mean; n = 7) compared with 23 +/- 4% in 1 mM Mg(2+)-containing medium (n = 17). 3. The depressant action of 100 microM (1S,3R)-ACPD in Mg(2+)-free medium was reduced from 96 +/- 1 to 46 +/- 6% (n = 7) by the specific NMDA receptor antagonist (R)-2-amino-5-phosphonopentanoate (AP5; 100 microM). 4. Blocking both components of GABA receptor-mediated synaptic transmission with picrotoxin (50 microM) and CGP 55845A (1 microM) in the presence of 1 mM Mg2+ also enhanced the depressant action of (1S,3R)-ACPD (100 microM) from 29 +/- 5 to 67 +/- 6% (n = 6). 5. The actions of (1S,3R)-ACPD, recorded in Mg(2+)-free medium, were antagonized by the mGlu antagonist (+)-alpha-methyl-4-carboxyphenylglycine ((+)-MCPG). Thus, depressions induced by 30 microM (1S,3R)-ACPD were reversed from 48 +/- 4 to 8 +/- 6% (n = 4) by 1 mM (+)-MCPG. 6. In Mg(2+)-free medium, a group I mGlu agonist, (RS)-3, 5-dihydroxyphenylglycine (DHPG; 100 microM) depressed synaptic responses by 74 +/- 2% (n = 18). In contrast, neither the group II agonists ((2S,1'S,2'S)-2-(2'-carboxycyclopropyl)glycine; L-CCG-1; 10 microM; n = 4) and ((2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine; DCG-IV; 100 nM; n = 3) nor the group III agonist ((S)-2-amino-4-phosphonobutanoic acid; L-AP4; 10 microM; n = 4) had any effect. 7. The depolarizing action of (1S,3R)-ACPD, recorded intracellularly, was similar in the presence and absence of Mg(2+)-AP5 did not affect the (1S,3R)-ACPD-induced depolarization in Mg(2+)-free medium. Thus, 50 microM (1S,3R)-ACPD induced depolarizations of 9 +/- 3 mV (n = 5), 10 +/- 2 mV (n = 4) and 8 +/- 2 mV (n = 5) in the three respective conditions. 8. On resetting the membrane potential in the presence of 50 microM (1S,3R)-ACPD to its initial level, the e.p.s.p. amplitude was enhanced by 8 +/- 3% in 1 mM Mg2+ (n = 5) compared with a depression of 37 +/- 11% in the absence of Mg2+ (n = 4). Addition of AP5 prevented the (1S,3R)-ACPD-induced depression of the e.p.s.p. (depression of 4 +/- 5% (n = 5)). 9. It is concluded that activation by group 1 mGlu agonists results in a depression of excitatory synaptic transmission in an NMDA receptor-dependent manner.  相似文献   

17.
Pre-embedding immunoperoxidase staining for CAM II kinase-alpha and post-embedding immunogold staining for glutamate and GABA, were used to reveal the subcellular distribution of CAM II kinase-alpha at transmitter-characterized synapses in the CA1 region of rat hippocampus. Immunoelectron microscopy showed that the majority of CAM II kinase-alpha-immunostained neuronal profiles were dendritic spines presumably derived from pyramidal cells. CAM II kinase-alpha immunoreactivity was mainly localized in postsynatic densities associated with glutamatergic axon terminals. No CAM II kinase-alpha immunoreactivity was detected in GABA-immunoreactive profiles or at GABAergic synapses. This study provides morphological evidence that CAM II kinase-alpha is involved only in excitatory neuronal transmission in the CA1 region. The enzyme is unlikely to be involved in plasticity at GABA synapses.  相似文献   

18.
The effects of voltage-dependent Ca channel (VDCC) antagonists on synaptic transmission were investigated at CA3-CA1 synapses of guinea pig hippocampal slices. After selectively loading presynaptic structures in area CA1 with the calcium indicator fura-2, we simultaneously recorded a presynaptic calcium transient ([Ca]t) and the corresponding field excitatory postsynaptic potential (fEPSP) evoked by a single stimulus given to the Schaffer collateral-commissural (SCC) pathway. Application of nifedipine did not reduce either the [Ca]t of the fEPSP, suggesting that nifedipine-sensitive Ca channels do not significantly contribute to evoked synaptic transmission at low stimulation frequency. Application of omega-conotoxin GVIA (omega-CgTX) or omega-agatoxin-IVA (omega-Aga-IVA) dose-dependently blocked both the [Ca]t and the fEPSP. The time course of the block of the [Ca]t was similar to that of the fEPSP. About 40% of the total [Ca]t was omega-CgTX sensitive, and more than 20% was omega-Aga-IVA sensitive. Combined application of these two blockers showed no overlap of the omega-CgTX-sensitive with the omega-Aga-IVA-sensitive [Ca]t. These results suggest that there are at least two types of presynaptic VDCCs at CA3-CA1 synapses of the hippocampus: omega-CgTX-sensitive and omega-Aga-IVA-sensitive Ca channels. Our results also suggest that these two types of Ca channels are colocalized at a single presynaptic terminal. During application of omega-CgTX or omega-Aga-IVA, the initial slope of the fEPSP varied approximately as the fourth power of the amplitude of the [Ca]t, suggesting that omega-CgTX-sensitive and omega-Aga-IVA-sensitive Ca channels have about equal efficacy in triggering transmitter release. These results in combination with similar findings at the squid giant synapse suggest that the nonlinear relationship between transmitter release and the Ca influx is well conserved from the molluscan to the mammalian nervous system.  相似文献   

19.
LTP induction dependent on activation of Ni2+-sensitive voltage-gated calcium channels, but not NMDA receptors, in the rat dentate gyrus in vitro. J. Neurophysiol. 78: 2574-2581, 1997. A N-methyl--aspartate receptor (NMDAR)-independent long-term potentiation (LTP) has been investigated in the dentate gyrus of the hippocampus in vitro in the presence of the NMDAR antagonist, -2-amino-phosphonopentanoate (50-100 mu M), at a concentration that completely blocked NMDAR-mediated excitatory postsynaptic currents (EPSCs). LTP of patch-clamped EPSCs was induced by pairing low-frequency evoked EPSCs (1 Hz) with depolarizing voltage pulses designed to predominately open low-voltage-activated (LVA) Ca2+ channels. Voltage pulses alone induced only a short-term potentiation. The LTP was blocked by intracellular application of the rapid Ca2+ chelator bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid, demonstrating that a rise in intracellular Ca2+ is required for the NMDAR-independent LTP induction. The NMDAR-independent LTP induction also was blocked by Ni2+ at a low extracellular concentration (50 mu M), which is known to strongly block LVA Ca2+ channels. However, Ni2+ did not inhibit the NMDAR-dependent LTP induced by high-frequency stimulation (HFS). The NMDAR-independent LTP induction was not blocked by high concentrations of the L-type Ca2+ channel blocker nifedipine (10 mu M). The NMDAR-independent LTP was inhibited by the metabotropic glutamate receptor ligand (+)-alpha-methyl-4-carboxyphenylglycine. These experiments demonstrate the presence of a NMDAR-independent LTP induced by Ca2+ influx via Ni2+-sensitive, nifedipine-insensitive voltage-gated Ca2+ channels, probably LVA Ca2+ channels. Induction of the NMDAR-independent LTP was inhibited by prior induction of HFS-induced NMDAR-dependent LTP, demonstrating that although the NMDAR-dependent and NMDAR-independent LTP use a different Ca2+ channel for Ca2+ influx, they share a common intracellular pathway.  相似文献   

20.
It is unclear whether GABA(A) receptor-mediated hyperpolarizing and depolarizing synaptic potentials (IPSP(A)s and DPSP(A)s, respectively) are evoked by (a) the same populations of GABAergic interneurones and (b) exhibit similar regulation by allosteric modulators of GABA(A) receptor function. We have attempted to address these questions by investigating the effects of (a) known agonists for presynaptic receptors on GABAergic terminals, and (b) a range of GABA(A) receptor ligands, on each response. The GABA uptake inhibitor NNC 05-711 (10 microM) enhanced whereas bicuculline (10 microM) inhibited both IPSP(A)s and DPSP(A)s. (-)-Baclofen (5 microM), [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAGO; 0.5 microM), and carbachol (10 microM) caused substantial depressions (up to 99%) of DPSP(A)s that were reversed by CGP 55845A (1 microM), naloxone (10 microM) and atropine (5 microM), respectively. In contrast, 2-chloroadenosine (CADO; 10 microM) only slightly depressed DPSP(A)s. Quantitatively, the effect of each agonist was similar to that reported for IPSP(A)s. The neurosteroid ORG 21465 (1 - 10 microM), the anaesthetic propofol (50-500 microM), the barbiturate pentobarbitone (100-300 microM) and zinc (50 microM) all enhanced DPSP(A)s and IPSP(A)s. The benzodiazepine (BZ) agonist flunitrazepam (10-50 microM) and inverse agonist DMCM (1 microM) caused a respective enhancement and inhibition of both IPSP(A)s and DPSP(A)s. The BZomega1 site agonist zolpidem (10-30 microM) produced similar effects to flunitrazepam. The anticonvulsant loreclezole (1-100 microM) did not affect either response. These data demonstrate that similar populations of inhibitory interneurones can generate both IPSP(A)s and DPSP(A)s by activating GABA(A) receptors that are subject to similar allosteric modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号