共查询到18条相似文献,搜索用时 50 毫秒
1.
利用量子化学计算、循环伏安、电化学阻抗及充放电测试等方法,考察了电解液成膜添加剂碳酸乙烯亚乙酯(VEC)对锂离子电池性能的影响.量子化学计算结果表明:VEC具有较低的分子最低空轨道(LUMO)能量值.循环伏安及交流阻抗测试表明:碳酸乙烯亚乙酯的还原电位为1.2 V( vs.Li/Li+),优先于电解液在负极表面发生电化学反应形成电解质相界面(SEI)膜.该膜较稳定,可提高电池的循环性能,并抑制电池气胀.SEI膜阻抗较大,不利于电极的嵌脱锂反应,导致首次充放电容量及效率较低. 相似文献
2.
以碳包覆Si合金粉末与人造石墨混合作为负极材料,制备CR2032型扣式电池,探讨氟代碳酸乙烯酯(FEC)、碳酸亚乙烯酯(VC)和氯代碳酸乙烯酯(CEC)等3种电解液添加剂对Si-C负极材料半电池性能的影响。适当的添加剂会先于碳酸酯类溶剂在负极材料表面形成薄而稳定的固体电解质相界面(SEI)膜,抑制碳酸酯类溶剂在充放电过程中的分解,使Si合金粉末的碳包覆壳保持稳定,同时解决Si-C负极材料的体积膨胀问题。当FEC、VC和CEC的添加量(体积分数)分别为3%、1%和3%时,电池的放电比容量、首次库仑效率和循环稳定性均得到改善。以100 mA/g电流在0.01~3.00 V充放电,Si-C负极材料的首次放电比容量达452.60 mAh/g,首次库仑效率达91.90%;第循环150次的容量保持率为86.50%。 相似文献
3.
4.
5.
6.
通过循环伏安(CV)、扫描电子显微镜(SEM)、电化学阻抗谱(EIS)和恒电流充放电测试方法研究了二氟草酸硼酸锂(LiODFB)基电解液对Li/石墨半电池和镍锰酸锂(LiNi_(0.5)Mn_(1.5)O_4)/石墨全电池性能的影响。结果表明,在首次循环过程中,Li ODFB约在1.5 V在石墨电极表面还原,形成初始固体电解质相界面膜(SEI),阻止电解液与石墨电极的直接接触,电解液在石墨电极表面的还原得以减少,从而在石墨电极表面形成了致密低阻抗的SEI膜,提高了Li/石墨半电池和LiNi_(0.5)Mn_(1.5)O_4/石墨全电池的循环性能。 相似文献
7.
8.
9.
10.
11.
12.
添加剂FEC对锂离子电池性能的影响 总被引:3,自引:0,他引:3
采用恒流充放电法和循环伏安法研究了FEC对PC基电解液与石墨负极(改性人造石墨(MAG)和LiCoO2正极体系相容性的影响,使用DSC-TG法分析了FEC对LiCoO2的热稳定性影响。初步探讨了FEC对PC基电解质与MAG相容性的影响机理。GC/MS结果表明,FEC的添加使MAG电极表面形成一层稳定的固体电解液相界面(SEI)膜,抑制了PC共嵌,并使循环性能得到改善。DSC结果分析表明,FEC使LiCoO2在电解液中的热稳定性降低,但优于EC基电解液。 相似文献
13.
14.
15.
利用多巴胺自聚合原理,通过包覆一层氮掺杂的碳质材料(无定型碳)来降低磷酸铁锂(LiFePO4)材料的表面电阻,提高低温下Li+迁移速率。采用含氟有机溶剂氟代碳酸乙烯酯,以物质的量比为1∶1的双三氟甲磺酰亚胺锂(LiTFSI)和双(五氟乙基磺酰基)亚胺锂(LiBETI)为混合锂盐,制备1 mol/L混合锂盐电解液(MLiE),以解决电池在低温环境下性能下降的问题。与目前的商业LiFePO4/石墨电池相比,组装使用MLiE的LiFePO4锂离子电池在-20℃于3.65~2.50 V充放电,0.1 C、0.2 C、0.5 C和1.0 C放电容量分别增加了37.4%、44.6%、51.1%和65.3%。 相似文献
16.
17.
聚合物锂离子蓄电池气胀原因的初步探讨 总被引:1,自引:1,他引:1
采用气相色谱方法对电池在化成阶段和储存阶段产生的气体进行了分析,初步讨论了聚合物锂离子蓄电池在化成阶段产生气体和储存阶段发生气胀的原因。结果表明,电池在化成阶段产生气体的主要原因是在负极形成固体电解质膜(SEI层)的过程中,电解液溶剂体系发生了分解;而在储存阶段少数电池出现气胀,其原因可能为:(1)由于电池密封性能不好,外界的水分和空气的渗入,导致气体中的CO2显著增加,且同时出现相当量的O2和N2,同时水分的渗入还会破坏SEI层;(2)若首次化成形成的SEI层不稳定,在诸存阶段SEI层被破坏,为了修复SEI层,复又释放出以烃类为主的气体。 相似文献