共查询到18条相似文献,搜索用时 62 毫秒
1.
传统的下垂控制策略已无法适用于线路阻感比较大的低压微电网。加入虚拟阻抗能改善线路阻感比,提高运行稳定性,但也导致了电压降落过大。其虚拟阻抗值的设定受系统阻抗值实际测量难度及随线路投切的影响,亦无法确定。因此,提出了一种基于动态虚拟阻抗的改进控制策略。设计的动态虚拟阻抗随负载电流和电压降落幅值而变化,虚拟阻抗值在动态虚拟阻抗环的作用下,不断自适应地调整取值,解决了虚拟阻抗值无法确定的问题。在满足系统稳定性的同时,减少了线路电压降落,抑制了系统环流,改善了系统的电能质量。仿真和实验结果验证了该控制策略的可行性及有效性。 相似文献
2.
受到馈线阻抗不匹配等因素的影响,孤岛微电网在传统的下垂控制下难以按照下垂系数合理分配负载无功功率。为了提高孤岛微电网无功功率分配精度,本文提出一种自适应虚拟阻抗控制策略。该策略根据由通信获取的无功功率参考值自适应调整虚拟阻抗的大小,以补偿馈线间电压降的不匹配,从而实现精确的无功功率均分。该策略不需要测量馈线阻抗参数且对通信的可靠性要求不高。当自适应虚拟阻抗在当前负载条件下已经调节完成时,即使通信中断也能实现精确的无功功率均分。若通信中断时负载发生变化,无功分配精度会降低,但仍优于传统的下垂控制策略。在Matlab/Simulink中建立了20 kV·A微电网模型,通过仿真结果验证了所提控制策略的有效性和可行性。 相似文献
3.
在多逆变器并联运行的低压微电网系统中,由于各逆变器输出线路阻抗差异的存在,导致系统中各分布式发电单元根据传统反下垂控制策略对公共负荷的有功功率难以进行合理分配,影响系统的稳定性.针对这一问题,对低压微电网系统的输出功率分配性能进行了理论分析,得出影响功率分配性能的主要因素.将自适应虚拟电阻引入电压电流双闭环控制中,不仅... 相似文献
4.
当前微电网并联逆变器下垂控制机制一般设定为独立式,控制的范围较难扩展,导致控制补偿差增加。为此,提出对基于虚拟阻抗自适应的孤岛型微电网并联逆变器下垂控制策略的设计与实践。先进行下垂控制特性提取,采用交互的方式,扩大控制的范围,设计交互控制机制。在此基础上,构建虚拟阻抗自适应微电网并联逆变器下垂控制模型,采用补偿核验的方式确保下垂控制效果。针对选定的5个测试逆变器,经过2个周期的测定得出的控制补偿差被较好地控制在1.05以下,说明此次在虚拟阻抗自适应原理的辅助下,所设计的微电网并联逆变器下垂控制方法更为高效,具有实际的应用价值。 相似文献
5.
低压微电网逆变器的等效输出阻抗受线路参数影响会呈现出阻性,而传统下垂控制是基于感性阻抗为前提,直接用于低压微电网逆变器控制达不到频率和电压的控制要求。在分析了传统下垂控制法和逆变器等效输出阻抗对系统影响的基础上,提出了引入反馈感性阻抗的电压电流双环控制。反馈感性阻抗的引入使逆变器等效输出阻抗为感性,可以正确体现P-f、Q-V动态下垂控制特性,并且在并/离网运行模式变化时不用切换控制策略。通过在PSCAD中建立风光储微电网仿真模型,分析了并/离网和负荷突变的仿真结果,验证了控制策略的有效性和正确性。 相似文献
6.
7.
针对低压微电网中,采用传统有功功率—电压幅值下垂控制的分布式电源在阻抗不匹配时难以按照下垂系数合理分配负荷有功功率的问题,提出了一种基于自适应虚拟阻抗的分布式功率控制策略,有效补偿了不匹配的馈线阻抗引起的电压降差异,实现了负荷功率的合理分配。所提策略基于多智能体一致性理论,构建了分布式的控制结构,各分布式电源仅需使用本地和相邻电源的功率信息对虚拟阻抗的模进行自适应调节,避免了对全局信息的依赖。通信网络拓扑中包含生成树的系统需求易于通过稀疏网络实现。同时,根据输出功率因数调节虚拟阻抗的阻抗角,增强了系统的鲁棒性。仿真结果证明了所提策略的有效性和可行性。 相似文献
8.
传统新能源微电网功率控制系统因忽略虚拟阻抗而不利于随机位置分布式电源的结合,导致容易发生电网故障,致使微电网整体瘫痪。为了解决上述问题,本文提出基于自适应虚拟阻抗的新能源微电网功率控制系统的研究。引入虚拟阻抗,降低逆变器输出功率的耦合程度。通过逆变器额定容量比值确定虚拟电阻取值范围,计算微电网输出电压,保障微电网输出电能质量。在积分控制器下控制虚拟阻抗电阻数值,使逆变器输出功率趋近于积分控制器计算得到的功率参考值,保障输出功率的稳定性,实现对新能源微电网的功率控制。设计仿真实验,结果显示:本文方法控制的逆变器在同容量逆变器并联条件下,输出的有功功率最为稳定,无功功率保持均分状态;不同容量逆变器并联条件下,输出的有功功率稳定用时最短、无功功率基本与额定容量比匹配,充分说明提出方法对新能源微电网的功率控制及运行具备较好的控制效果。 相似文献
9.
低压微电网中连接线参数不等使得并联逆变器输出功率存在偏差。针对低压微电网的线路特性,忽略线路电抗后采用阻性下垂控制方法实现功率解耦,同时增加虚拟负感抗抵消逆变器的等效输出感抗,进一步提高功率解耦控制的准确性。在此基础上,提出了一种基于本地信息的自适应虚拟电阻控制方法以减小有功偏差,利用本地逆变器输出的有功功率和电压作为馈入信号自适应地调节虚拟电阻取值,通过有功功率偏差方程揭示了其作用机理,并利用小信号稳定性分析对虚拟电阻系数的取值进行了优化设计。在仿真和实验平台中与已有控制策略进行对比,结果表明所提控制策略能够在提高有功均分精度的同时减小电压降,无需通信系统更有利于实现微电网的“即插即用”。 相似文献
10.
基于自适应虚拟阻抗的交流微电网无功功率—电压控制策略 总被引:1,自引:1,他引:0
微电网作为分布式电源的有效载体,是分布式能源合理利用的有效途径。而在微电网中,由于物理线路阻抗不匹配等因素的影响,传统的下垂控制难以合理分配无功功率。为了改善无功分配的精度,提出一种基于自适应虚拟阻抗的微电网无功功率—电压控制策略。该方案在传统的虚拟阻抗基础上叠加自适应项,从而修改电压参考值;同时,通过电压恢复机制来补偿由此造成的输出电压的降低。仿真和实验结果实现了负荷有功和无功功率的合理均分,从而验证了所提控制策略的可行性和有效性。 相似文献
11.
由于微网中线路阻抗呈非纯感性,且线路阻抗与分布式电源容量不匹配,导致有功功率和无功功率之间强耦合且功率不能按容量进行分配。文中在利用下垂控制时,在传统虚拟阻抗的基础上进行改进,提出了一种自适应虚拟阻抗控制策略,降低了功率之间的耦合关系,并可使无功功率按容量分配。但由于下垂控制的特性和虚拟阻抗的利用,导致了电压和频率的偏移,因此增加了电压补偿控制和改进的相位补偿控制,使输出电压、相位、频率均和参考值一致,最后通过小信号稳定性分析和仿真验证了文中所提控制策略的合理性和有效性。 相似文献
12.
并网直流微源的有效管理和控制是保证直流微网稳定运行的关键。下垂控制是直流微网中常用的管理和控制直流微源的一种方法,能够有效实现微源间功率分配。但传统的基于荷电状态(State of Charge, SOC)的下垂控制存在随着SOC减小直流母线电压跌落逐渐加剧的缺陷,针对该缺陷提出了一种基于SOC的改进下垂控制策略。首先给出了根据母线电压波动的下垂系数调整律,当母线电压跌落时会自动减小下垂系数。随后建立了以输出电容的电压和电流为状态量的系统控制模型,设计了电流内环电压外环的双环PI控制器。最后搭建了Matlab/Simulink仿真模型,对比仿真了四种不同因素影响下系统的控制性能。仿真表明所提出的改进下垂控制很好地实现了母线电压稳定和各微源功率按其SOC合理分配,并具有较强的抗负载变化能力。 相似文献
13.
采用了虚拟阻抗及二次调频调压的下垂控制方法作为微电网独立运行时的控制策略。通过基于αβ坐标系下的快速相位同步方法来加快逆变器并入微电网或微电网并入大电网的速度。当微电网处于并网运行时,采用αβ坐标系下的PQ控制将各微电源控制为电流源。在此基础上,通过采用公共耦合点PCC(point of common coupling)处的联络功率控制策略,实现微电网并网运行时与大电网间的联络功率控制。根据搭建的MATLAB仿真模型对上述控制策略进行了仿真,最后对上述控制策略进行了实验验证。 相似文献
14.
15.
16.
受微电网线路阻抗不匹配等因素影响,传统下垂控制常存在无功均衡问题。应用虚拟阻抗方法可以抑制无功均衡误差。然而,传统虚拟阻抗方法没有充分考虑微电网网络中的不匹配因素。为了提高无功均衡准确度,提出了一种基于微电网全局无功均衡误差最小化思想的虚拟阻抗优化方法。通过微电网网络建模,推导了网络无功均衡误差估算方法。然后,基于无功传输特性设计了自适应虚拟阻抗控制器。在此基础上,构建全局无功均衡误差计算函数并优化,以获得最优控制器参数。该方法实施无需通讯,可在结构复杂的微电网中应用。相比传统虚拟阻抗方法,优化后的虚拟阻抗控制具有网络自适应能力,且无功均衡性能更为良好。仿真和实验结果均验证了所提方法的有效性。 相似文献
17.
适用于低压微电网的逆变器控制策略设计 总被引:4,自引:1,他引:4
低压微电网中线路阻抗呈阻性,为保证逆变器输出阻抗与线路阻抗相匹配,在逆变器控制策略中引入了阻性虚拟阻抗。分析了逆变器电压环积分参数对逆变器输出阻抗的影响,在保证逆变器稳定运行的前提下,提高电压环积分系数可使逆变器输出阻抗呈阻性。对微电网等效电路分析得出,调节逆变器输出电压幅值可以调节逆变器输出的有功功率,调节逆变器的频率可以调节逆变器输出的无功功率。微电网并网运行时,分析了参数检测误差对逆变器输出功率的影响,在下垂特性控制中,引入幅值和频率微调的比例—积分(PI)调节器,可实现逆变器输出功率的无静差跟踪。仿真结果表明,所提逆变器控制策略运行稳定,在并网和孤岛运行时都具有优良的性能。 相似文献
18.
受线路物理属性、下垂特性等因素的影响,传统下垂控制无法精确调节功率分配以及会导致DG输出端电压跌落。提出一种基于分布式控制的自适应电压平移法,各DG通过自身与其相邻DG加权功率间的偏差调节各自的电压偏置值,可减小因线路阻抗差异而导致的无功功率无法均分的影响。在此基础上,进一步提出一种改进型下垂控制策略,通过引入DG输出电压幅值与电压偏置值的差值反馈,构建改进型下垂特性曲线,可有效改善逆变器无功下垂系数、无功负载和输出电压幅值跌落之间的内在矛盾,进一步提高系统性能。建立了基于改进型下垂控制的2台三相逆变器并联系统小信号数学模型,分析了各参数对系统受扰动后的动态以及稳定性影响。仿真以及实验结果验证了所提控制策略的有效性。 相似文献