首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
研制以Li Ni_(1/3)Co_(1/3)Mn_(1/3)O_2、钛酸锂(Li_4Ti_5O_(12))分别为正、负极活性物质,25μm厚的聚乙烯为隔膜的方形(245 mm×160 mm×6 mm)12 Ah铝塑膜软包装锂离子电池。筛选电极材料、电解液配方,并通过优化工艺制作的电池在1.5~2.7 V充放电,在常温(25℃)下以4.00 C循环6 000次的容量保持率大于98%,且不胀气;以0.50 C放电,在高温(55℃)下的容量为常温时的108.2%;最高脉冲放电比功率为2 232 W/kg。5只100%SOC电池串联进行针刺测试,不起火、不爆炸。  相似文献   

2.
采用Mg~(2+)离子掺杂和碳包覆对Li_4Ti_5O_(12)(LTO)锂离子电池负极材料进行改性,研究了不同烧结温度对LTO导电性及综合性能的影响。采用XRD、SEM和循环伏安等测试手段,表征了不同掺杂和不同烧结温度对LTO结构和电化学性能的影响。结果表明:掺杂3%的Mg~(2+)同时加入质量分数为0.5%的无机碳源和10%的有机碳源时,材料在800℃下烧结12 h性能最佳;改性后明显降低了LTO的电荷转移阻抗,与纯相的LTO相比,改性后的材料倍率性能及其他综合性能都有很大的提高。0.2 C倍率条件下首次放电比容量为173 mAh/g,10 C倍率条件下放电比容量为104 mAh/g。  相似文献   

3.
黎明旭  刘艺  钱龙  王海涛 《电池》2016,(6):328-331
采用4种正极活性物质,设计32650型4.0 Ah钛酸锂(Li_4Ti_5O_(12))负极锂离子电池,评估充放电倍率性能、放电温升、低温放电性能、循环性能和安全性能。尖晶石镍锰酸锂(Li Ni0.5Mn1.5O4)正极电池的电压平台高(3.15 V),-20℃下的1 C放电(3.3~2.0 V)容量是常温时的83.16%,比能量为74.57 Wh/kg;磷酸铁锂(LiFePO_4)正极电池的电压平稳(1.70 V),适用于对电压要求严格的领域。三元材料正极电池中,镍钴锰酸锂(LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2)正极电池的各项性能较优,3 C循环3 486次的容量保持率为102.58%,可用于快充领域;镍钴铝酸锂(LiNi_(0.8)Co_(0.15)Al_(0.05)O_2)正极电池更适合于储能领域。  相似文献   

4.
张艳霞  王晨旭  王双双  谢佳 《电池》2013,43(1):41-44
使用锰酸锂(LiMn2O4)、镍钴锰酸锂(LiNi1/3 Co1/3Mn1/3O2)混合正极材料和钛酸锂(Li4 Ti5 O12)负极材料,制备了中倍率1865140型锂离子电池.制备的电池在12 min内可充满电池容量的80%以上,且电池表面温度不超过35℃;在室温下以2.00 C循环1 200次,容量保持率高于91%;在高温55℃下以1.00 C循环1 000次,容量保持率高于82%.FreedomCAR混合脉冲功率特性表明:在放电深度(DOD) 10% ~ 70%内、10s脉冲充放电状态下,电池的阻抗都在9 mΩ以下;50%DOD时的10s放电比功率为372 W/kg,充电比功率为520 W/kg.  相似文献   

5.
以LiCr_(0.1)Ni_(0.45)Mn_(1.45)O_4为正极,Li_4Ti_5O_(12)为负极组装成新型LiCr_(0.1)Ni_(0.45)Mn_(1.45)O_4/Li_4Ti_5O_(12)电池体系,采用恒流充电模式进行充放电容量和循环性能等电化学性能测试,并通过交流阻抗和循环伏安测试对其容量衰减机理进行研究,结果表明:对于LiCr_(0.1)Ni_(0.45)Mn_(1.45)O_4/Li_4Ti_5O_(12)电池体系,正极活性物质过量越多,循环性能越好;负极-正极活性物质比例N/P为1.1、0.9、0.7的电池体系,25次循环后容量保持率分别为61.4%、70.4%、97.9%;LiCr_(0.1)Ni_(0.45)Mn_(1.45)O_4/Li_4Ti_5O_(12)电池容量衰减的直接原因是电池正负极表面持续生成的CEI膜和SEI膜造成的活性Li~+消耗和电池倍率能力下降。  相似文献   

6.
万露  胡颖  付争兵 《电池》2017,(5):277-280
以CH_3COOLi为锂源、Ti(OC_4H_9)_4为钛源、聚乙二醇(PEG)1000为碳源、CO(NH_2)_2为氮源,采用溶胶-凝胶法制备球形氮修饰碳(NC)包覆钛酸锂(Li_4Ti_5O_(12))复合材料。用XRD、X射线光电子能谱(XPS)和热重测试分析材料的晶型及元素组成,用SEM和透射电子显微镜测试分析结构。制备的材料呈球形,NC包覆未改变Li_4Ti_5O_(12)的晶型,但会导致烧结过程中部分Ti~(4+)还原成Ti~(3+)。恒流充放电、循环伏安和交流阻抗等测试表明:NC包覆,可提高Li_4Ti_5O_(12)的电化学性能,当NC包覆量为4.11%时,复合材料的循环性能最好,以1 C在0.8~2.5 V循环100次,仍保持103.5 mAh/g的比容量。  相似文献   

7.
采用参比电极确定18650型钛酸锂(Li_4Ti_5O_(12))/钴酸锂(LiCoO_2)电池在45℃下循环失效后的限容电极,对限容电极进行形貌、结构、交流阻抗及循环伏安等分析。电池失效后,充放电限容电极均为LiCoO_2正极;该电极失效的主要原因是活性物质结构被破坏,LiCoO_2的晶粒细化且内部微观应变较大,导致极片的界面性能下降及嵌脱锂动力学严重降低。  相似文献   

8.
采用葡萄糖/碳纳米管对实验室制备的钛酸锂进行包覆改性,并选用商业化钛酸锂材料LTO-KDBR做对比,通过对材料的结构分析和电化学性能测试,为钛酸锂材料的产业化应用提供理论依据和指导。XRD测试表明实验室制备的钛酸锂材料LTO和LTO/C-4%与商业化产品LTO-KDBR的Li_4Ti_5O_(12)晶体结构相近,没有显著差别。SEM分析表明LTO和LTO/C-4%材料的颗粒均一性较差,存在2~3μm的较大颗粒,而LTO-KDBR材料为200~300 nm一次颗粒团聚而成。在10 C倍率下,LTO-KDBR的放电比容量为141.60 mAh/g,显著高于LTO和LTO/C-4%的比容量85.93和126.49 mAh/g。采用LTO-KDBR制备的18650电池,充放电循环500次后的放电容量保持率为88.7%,表明钛酸锂材料作为一种新型负极材料具有较好的大倍率充放电性能和长循环寿命。  相似文献   

9.
以扣式电池评估了碳包覆钛酸锂的比容量。采用磷酸铁锂为正极,碳包覆钛酸锂(Li4Ti5O12)粉末作为负极活性材料制作锂离子软包电池,并对电池进行测试。该电池2C放电容量能够达到0.5C放电容量的81.6%。1C2000次循环后,容量保持率在90%以上,展现了优异的循环性能。电池以3C倍率过充到15V,没有漏液、爆炸和起火,经过针刺测试后,没有爆炸和起火,电池表面最高温度不超过90℃。  相似文献   

10.
崔明  许汉良  张帆  郭付祥 《电池工业》2009,14(5):309-312
采用LiMn2O4为正极材料,Li4Ti5O12为负极材料制成了26650/2500mAh的锂离子电池,该电池10C放电容量能够达到1.0C放电容量的97.30%,电池在-20℃的条件下以0.5C放电,能够放出25℃条件下容量的98.72%,在55℃的条件下以0.5C放电,能够放出25℃条件下容量的97.83%,1.0C循环测试200次后,容量剩余率为96.10%;电池以3.0C倍率过充到20.0V,没有爆炸和起火,经过针刺短路之后,没有爆炸和起火,电池表面最高温度不超过90℃。  相似文献   

11.
选用三元材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2为正极材料,中间相炭微球为负极材料,制备了额定容量为10 Ah的铝壳锂离子动力电池,并对电池的电性能和安全性能进行了相关测试。电性能包括充放电性能、倍率性能、循环性能和自放电,实验结果表明,电池表现出了良好的倍率性能,1 C、2 C的放电容量分别为0.5 C放电容量的97.49%、93.70%;在2.7~4.2V电压范围内,电池1 C循环400次后容量保持率为101.77%;电池满电常温搁置28天后容量保持率为97.06%。针刺、短路、过充电和自有跌落测试结果表明电池具有良好的安全性能。  相似文献   

12.
主要以聚乙烯为隔膜,锰酸锂(Li Mn2O4)、钛酸锂(Li4Ti5O12)为电池正负极的活性物质制备得到12 Ah软包装锂离子电池。通过选择合适的电解液配方及电极材料,并对制作工艺优化后制备可得实验电池。在1.6~2.8 V下对电池进行充放电实验发现,常温下以4.00 C循环5 000次时,电池的容量保持率仍大于96%;以0.50 C放电时,高温下其容量约为常温下的108.0%;最高脉冲放电比率为2 238 W/kg。  相似文献   

13.
锰酸锂正极材料在充放电循环过程中容量衰减严重,严重影响其大规模应用。针对其容量衰减严重的问题,通过固相制备出Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4正极材料,并用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、能量散射光谱(EDS)、充放电测试、CV和EIS对其结构、形貌及电化学性能进行了研究。结果表明,Mg2+、Na+的掺杂未改变Li Mn2O4的结构。在0.2 C下,样品Li Mn2O4和Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4的首次放电比容量分别为127.1 m Ah/g和123.3 m Ah/g,充放电循环100次后,其容量保持率分别为77.34%和94.81%,Mg2+、Na+掺杂后,材料的初始放电比容量略有降低,但循环性能明显得到了改善。在10 C下,Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4的放电比容量高达92.4 m Ah/g。实验表明,Mg2+、Na+的共同掺杂有效改善了Li Mn2O4的循环稳定性和倍率性能。  相似文献   

14.
靳芳芳  任丽  赵德 《电池》2016,(6):306-309
采用高温固相法制备LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,并用三氧化二铝(Al_2O_3)进行表面包覆改性。通过XRD、SEM对材料晶体结构、形貌进行分析,用恒流充放电和循环伏安等对材料进行测试。Al_2O_3包覆的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料具有典型的空间群,为R-3m的六方层状α-Na Fe O2结构。以0.2 C在2.5~4.3 V循环,Al_2O_3包覆量为1%的材料电化学性能最好,首次放电比容量可达145.7 m Ah/g,第30次循环的容量保持率为94.0%,比未包覆Al_2O_3材料在相同条件下的放电比容量提高了6.3%。  相似文献   

15.
将介孔碳纳米微球粉末与磷酸铁锂(LiFePO_4)、石墨混合(介孔碳含量为8%)作为电池的正负极材料,组装锂离子电池。添加碳纳米微球后,电池的可逆性和比容量均优于未添加的,尤其在大电流9.0 A充放电时,充电电压平台约低0.25 V;充放电效率高出约88.5%;输出容量与放电电流为0.8 A时的比值高约15%。在低温0℃、-10℃和-20℃放电时,添加碳纳米微球的电池输出容量与额定容量的比值比未添加的分别高12.4%、14.9%和16.7%。  相似文献   

16.
陈猛  武洪彬  刘瑶  康亮 《电池工业》2010,15(1):11-14
采用高温固相法和溶胶凝胶法合成了锂离子电池负极材料尖晶石型Li4Ti5O12。用XRD、SEM、循环伏安、电化学阻抗图谱、恒流充放电测试研究了材料的晶体结构和电化学性能。结果表明:所制备的材料Li4Ti5O12均具有良好的尖晶石型结构,其中草酸与钛酸四丁酯物质的量比为1.0时Li4Ti5O12电化学性能最佳,以0.5C的倍率循环充放电,首次放电比容量可达到140.82mAh/g,50次循环后放电比容量仍保持在120.06mAh/g,保持率为85.26%。  相似文献   

17.
将荷电态(SOC)为2%(剩余电量为0.1 Ah)的石墨/LiFePO_4锂离子电池分别在不同温度(25℃、50℃、60℃和70℃)下存储6 h,测试常温/高温荷电保持能力、低温(-20℃)放电和常温1 C循环(2.50~3.65 V)性能。电池的常温/高温荷电保持能力和低温(-20℃)放电性能均随存储温度的升高先增强、后减弱,经60℃存储后,电池的上述性能最优;在常温下1 C循环1 500次后,高温(≥50℃)存储后电池的容量保持率约为88%。  相似文献   

18.
用溶剂热法制备绒球状钴酸锌(ZnCo_2O_4)/碳纳米管(CNT)复合材料。用XRD、SEM技术分析物相和形貌,用恒流充放电及循环伏安法测试电化学性能。添加CNT使ZnCo_2O_4呈多孔结构,可提高作为锂离子电池负极材料的电化学性能。以500 mA/g的电流在0.01~3.00 V循环,ZnCo_2O_4/CNT的首次充、放电比容量分别为1 002.3 mAh/g、1 284.9 mAh/g,首次库仑效率达78.00%;第50次循环的充、放电比容量分别为1 197.2 mAh/g、1 209.8 mAh/g,库仑效率达98.96%。  相似文献   

19.
以氢氧化钠为沉淀剂,氨水为络合剂,通过氢氧化物共沉淀法制得前驱体,然后高温煅烧,合成锂离子电池正极材料Li(Ni_(0.6)Co_(0.15)Mn_(0.25))_(1-x)Mg_xO_2(x=0、0.01、0.02、0.03和0.04)。通过XRD、循环伏安、电化学阻抗谱(EIS)和恒流充放电等测试,研究Mg掺杂对材料性能的影响。适量的Mg掺杂可降低材料阳离子混排度,提高材料的循环性能及倍率性能。Li(Ni_(0.6)Co_(0.15)Mn_(0.25))_(0.98)Mg_(0.02)O_2的电化学性能较好,以0.1 C在2.7~4.3 V循环,首次放电比容量高达190.9 mAh/g;1.0 C循环30次的容量保持率为90.07%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号