共查询到18条相似文献,搜索用时 60 毫秒
1.
电能质量复合扰动分类识别 总被引:3,自引:2,他引:3
电能质量扰动的分类分为信号特征提取和分类器2个阶段,采用S变换和支持向量机构造电能质量复合扰动的分类识别方案.利用S变换进行扰动信号特征提取,构造支持向量机静态分类树,再通过基于Mercer核的聚类方法对静态分类树进行动态扩展,形成动态分类树,实现对复合扰动的识别.给出了电能质量复合扰动分类算法的4个步骤:构建静态分类树;用基于Mercer核的聚类方法进行聚类分析;构建动态分类树;对新发现的扰动确定其具体类型,并给其命名.算例表明该方法不仅可以有效分类识别电压突降、电压突升、电压中断、暂态振荡、电压尖峰、电压缺口和谐波等7种电能质量扰动,还可以识别由其组合而成的电能质量复合扰动. 相似文献
2.
本文利用支持向量机对电能质量复合扰动进行分类,解决其多重分类问题,为了提高其整体分类的准确率,对支持向量机中的核函数进行了改进。考虑到特征向量在核函数中心位置的聚集程度会影响支持向量的数目,本文在核函数中引进一个径向宽度因子和一个幅值调节因子,从而解决传统核函数存在的问题,减少支持向量数目,降低计算复杂度。将改进后的算法应用到电能质量复合扰动分类中,验证所提方法对于电能质量复合扰动分类不仅具有可行性,并且有较高的分类准确率。从仿真实验结果可以看出,改进的方法对常见的7种单一电能质量扰动信号和5种电能质量复合扰动信号能够进行分类,相对原算法提高了分类准确率。 相似文献
3.
基于多标签Rank-WSVM的复合电能质量扰动分类 总被引:7,自引:0,他引:7
该文提出一种多标签排位小波支持向量机(rank wavelet support vector machine,Rank-WSVM),并将其应用于电能质量复合扰动分类中。Rank-WSVM将小波技术与多标签排位支持向量机(Rank-SVM)结合,利用小波的优良特性提高分类器的整体性能。首先,对电能质量扰动信号进行离散小波分解,计算 Tsallis 小波熵作为特征向量;然后利用所提出的 Rank-WSVM 多标签分类器进行分类。仿真结果表明,在不同噪声条件下,该方法有效改善了Rank-SVM的分类性能,可有效识别电压暂降、电压暂升、电压短时中断、脉冲暂态、振荡暂态、谐波和闪变等电能质量扰动及其组合而成的复合扰动。 相似文献
4.
针对不同类型电能质量扰动信号分类准确率不高的问题,通过MATLAB/simulink搭建常见的9种不同的电能质量扰动信号的模型进行仿真分析,提出一种改进的万有引力搜索算法(improved gravitational search algorithm, IGSA)对支持向量机(support vector machine, SVM)的惩罚因子和核函数参数进行寻优的方法,通过优化SVM的惩罚因子和核函数参数,构建IGSA-SVM分类器,再把提取到的特征向量进行归一化之后输入到所构造好IGSA-SVM分类器中进行训练与分类。仿真结果表明,IGSA-SVM分类器的分类准确率比SVM和GSA-SVM这2种分类器都要好,可以实现对9种不同的电能质量扰动信号的快速准确分类,有利于解决实际的工程问题。 相似文献
5.
6.
7.
针对电能质量复合扰动的识别问题,通过举例分析复合扰动信号,讨论了复合扰动的特点。详细综述国内外电能质量复合扰动分类的研究现状,将其研究方法分为单标签分类和多标签分类两大方面,分别对这两个方面中目前采用的思想和方法进行讨论。在单标签分类中,分别从直接分类、S变换+分类器、小波变换+神经网络、支持向量机和其它方法五个方面进行复合扰动分类讨论。在多标签分类中,分别从分类思路、分类策略和标签相关性等方面对该方法进行了讨论。最后,分析了电能质量复合扰动识别目前存在的问题,对其研究进行了展望。 相似文献
8.
采用提升小波包和相关向量机的电能质量扰动分类 总被引:2,自引:0,他引:2
针对电能质量扰动识别问题,提出一种多级相关向量机(RVM)和提升小波包分解(LWP)相结合的扰动分类新方法。根据电能扰动现象的内在特征,首先通过提升小波包算法快速提取各类扰动信号的分解系数能量作为扰动特征量;然后利用相关向量机构建多级分类树模型实现分类识别任务。研究表明相关向量机在权系数上引入超参数,与支持向量机相比无需设置惩罚系数、推广能力好、解更稀疏。仿真表明所采用方法能够快速有效地获取高精度扰动分类识别率,测试时间短,更适合于在线检测。仿真和试验结果验证了所采用方法对电能质量扰动分类的有效性。 相似文献
9.
对电能质量进行监测是用电信息采集系统的重要任务之一。针对电能质量扰动的识别和分类问题,提出一种基于小波支持向量机(support vector machine,SVM)的分类方法。对正常电压信号和6种电能质量扰动信号波形进行仿真,首先对各种扰动信号进行小波分解,提取各层小波重构系数的能量熵作为特征向量;然后改进的粒子群(particle swarm optimization,PSO)算法对SVM核函数参数进行优化;最后,利用优化参数的SVM对扰动测试集进行分类识别。仿真结果表明,与BP神经网络分类方法相比,该方法对扰动识别和分类的准确率达到97.28%,且训练时间和测试时间都有所减小。 相似文献
10.
结合傅里叶变换良好的幅频特性、小波变换良好的时频特性和支持向量机优秀的统计学习能力,采用多类分类支持向量机进行电能质量扰动的分类识别.对电压骤升、电压骤降、电压中断、谐波、电压波动、暂态振荡、瞬时脉冲、频率偏差等八种常见电能质量扰动进行数学建模,利用傅里叶变换和小波变换对产生的样本波形进行特征提取,将特征量输入到osu_svm进行电能质量扰动多类分类.算例表明该方案具有识别正确率高,训练样本数少,训练时间短,实时性好,对噪声不敏感等优点,是电能质量扰动识别的有效方法. 相似文献
11.
针对智能电网日益突出的电能质量扰动问题,提出了一种基于稀疏自动编码器(SAE)深度神经网络的电能质量扰动分类方法。利用SAE对电能质量扰动原始数据进行无监督特征学习,自动提取数据特征的稀疏特征表达;通过堆栈式稀疏自动编码器(SSAE)进行逐层学习,获得电能质量扰动数据的深层次特征;将其连接到softmax分类器进行微调训练,并输出电能质量扰动事件分类结果。利用已添加高斯白噪声的数据对SSAE进行训练,以提高其特征表达的抗噪声能力。仿真结果表明,所提方法能够准确地识别包含2种复合扰动在内的9种电能质量扰动信号,并且具有很好的鲁棒性。 相似文献
12.
为了提高电能质量扰动分类准确率,针对扰动信号时序性的特点,采用了基于卷积-长短期记忆网络的电能质量扰动分类方法。首先,将扰动信号进行采样作为输入。然后,通过卷积神经网络(CNN)提取特征数据,再对提取到的特征数据以序列的形式作为长短期记忆网络(LSTM)的输入,对特征数据进行筛选更新。最后,再对输出的特征数据进行学习分类。仿真结果显示,该方法对电能质量扰动信号的平均分类准确率为99.6%,优于单一的CNN法和单一的LSTM法。 相似文献
13.
针对实际电能质量扰动数据大、识别多重扰动精度不高的问题,提出了一种基于自适应最大似然卡尔曼滤波和深度置信网络相结合的电能质量扰动识别方法。首先,该方法使用自适应最大似然卡尔曼滤波对含有噪声的原始扰动信号进行去噪。然后,通过深度置信网络对去除噪声的扰动信号进行训练、分类,以此实现电能质量扰动类型的识别。最后,在20类不同噪声水平下的电能质量扰动信号上进行测试。由仿真结果可知,在不同的噪声水平下,该方法都具有较高的分类正确率,表明了该方法的有效性及对噪声的强鲁棒性。 相似文献
14.
基于支持向量机的动态电能质量扰动分类方法 总被引:3,自引:7,他引:3
将支持向量机SVM(SupportVectorMachine)引入到动态电能质量分类问题中。在Matlab中编程建立了谐波、电压暂升、电压跌落、瞬时中断、电压波动、瞬变6种常见动态电能质量扰动数学模型,利用傅里叶变换和小波变换对产生的样本波形进行特征提取,产生训练和测试样本。给出了利用LIBSVM解决电能质量扰动分类问题的步骤,并根据分类结果对影响分类效果的参数进行了分析。对训练好的支持向量分类器进行测试,效果良好,当采用C-SVC,RBF核时调整参数可以得到最优分类效果,最高分类率可达到96.67%。 相似文献
15.
提出一种改进的支持向量机模型,对电能质量扰动进行分类。支持向量机(SVM)在对大规模样本集的训练和分类时,需要占用大量内存,时耗过高,运算速度缓慢。针对这种情况提出一种改进的SVM模型:将原始训练样本集应用粗糙集理论(RS)去除冗余信息,然后在SVM中引入概率分布函数,用一个小规模的样本集训练得到一个初始的分类器,用这个初始分类器对大规模训练集进行修剪,修剪后得到一个规模很小的约减集,再用这个约减集进行训练得到最终的分类器。实验表明:这种改进的SVM模型有效降低了训练样本集的规模,提高了分类能力。 相似文献
16.
有机地结合贝叶斯分类法、感知准则函数分类法和最小错分样本数准则分类法的理论优点,提出了一种新的组合分类方法。该方法保留贝叶斯法的最优特点,去除其使用的必备条件,保留了最小错分样本数准则分类法可对交叉样本分类,去除其计算复杂的缺点。与常用的最小错分样本数准则函数分类法以及贝叶斯分类法、感知准则函数分类法相比,该组合分类法在理论上具有最优分类、可对交叉样本分类、计算简便的优点。在对暂态电能质量扰动分类的仿真分析过程中,充分显示了新方法的上述优点。 相似文献
17.
时频原子分解对电能质量扰动信号具有良好的分析效果,但其常用的匹配追踪(MP)算法,存在计算量大、参数空间离散化影响原子匹配性能等不足。基于差分进化,研究了电能质量扰动信号原子分解的进化匹配追踪(EMP)算法,给出了算法流程。针对几种电能质量扰动信号,通过Gabor和衰减正弦量原子分解的30次独立仿真实验,分析了信号长度、噪声等对性能的影响。结果表明,EMP算法与MP相比大大减少了计算耗时且不受信号长度的影响,进一步提高了原子的全局匹配能力,具有很好的抗噪声能力。最后,给出了下一步工作的展望。 相似文献
18.
为了提高电能质量扰动信号分类的准确率,首先利用相空间重构将一维时间序列电能质量扰动信号重构到多维相空间,获得扰动信号轨迹并投影到二维相平面,形成二维轨迹图像。然后对该图像进行二值化处理,减少信号的数据量,凸显轨迹轮廓。最后通过卷积神经网络对处理后的轨迹图像进行特征提取,并对相应的扰动信号进行分类识别。在卷积神经网络框架Caffe下进行仿真实验,仿真结果表明该方法具有很高的识别准确率和良好的抗噪能力。 相似文献