首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
通过液相无焰燃烧法制备了尖晶石型LiNi_(0.08)Mn_(1.92)O_4正极材料,采用XRD、SEM、循环伏安、交流阻抗及恒电流充放电测试等手段,分析了温度对产物晶体结构、微观形貌及电化学性能的影响。XRD结果表明掺Ni后的LiMn_2O_4仍为单一的尖晶石结构物相。SEM结果表明Ni掺杂改善了材料的形貌,稳定了材料的结构。电化学测试表明:700℃制备的LiNi_(0.08)Mn_(1.92)O_4电化学性能较优,在1C下初始放电比容量为105.0mAh·g~(-1),Rct值最小为135.6Ω,表明在电化学反应期间锂的嵌入和脱出引起的动力学阻抗最小;在0.5C~10C倍率循环中,700℃的样品比容量恢复率明显要高于其他温度的样品,表现出较好的循环可逆性和倍率循环稳定性。  相似文献   

2.
采用高温固相法分别制备Li Mn_2O_4和Li_(1.3)Al_(0.3)Ti_(1.7)(P O_4)_3材料,分别以质量比8∶2和6∶4不同比例复合做正极材料,利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)进行表征测试,恒流充放电、循环伏安法和电化学工作站研究其电化学性能,综合研究材料的性能。结果表明:质量比8∶2的样品颗粒分布比较均匀,边界清晰。通过电化学性能测试得出8∶2的样品首次冲放电效率可达到93.58%,纯的Li Mn_2O_4电极中样品的氧化还原峰更尖锐,电极反应速率快,氧化还原性能更好,纯的Li Mn_2O_4在0.1 C下循环50次后比容量保持率为90.3%。  相似文献   

3.
采用溶胶凝胶法制备尖晶石型高电压正极材料LiNi_(0.5)Mn_(1.5)O_4,并掺杂F-与之对比。分别采用X射线衍射仪、电子扫描显微镜、热重分析仪、电化学工作站和充放电测试仪对合成材料的物相、形貌和电化学性能进行表征。结果表明,0.5C倍率下LiNi_(0.5)Mn_(1.5)O_4首次放电比容量高达141.6 mAh/g,接近于理论比容量146.7 mAh/g。提高倍率40次循环后,5C比容量仍有111.8 mAh/g,而F-掺杂样品仅有92 mAh/g。然后从5C返回到1C,比容量为129.9 mAh/g,与1C初始容量相比,容量保持率高达96.4%,LiNi_(0.5)Mn_(1.5)O_4显示出更加优异的倍率循环性能。  相似文献   

4.
采用共沉淀法制备镍锰复合氢氧化物沉淀,然后与LiOH·H_2O混合,空气中800℃煅烧18h,并500℃短时间退火处理5h得到高电压正极材料LiNi_(0.5)Mn_(1.5)O_4。通过X射线衍射光谱法(XRD),扫描电子显微镜法(SEM)和恒电流充放电测试对样品的物相、形貌和电化学性能进行了表征。合成的LiNi_(0.5)Mn_(1.5)O_4具有立方尖晶石结构,结晶性良好,颗粒粒径均匀,为200~300nm。电化学测试表明:样品存在4.7V附近的电压平台,在0.5C的较大放电电流下,首次充电容量为141.0 mAh/g,首次放电容量为122.9 mAh/g,80次循环后样品的容量保持率为97.7%,且经过活化后每个循环的库仑效率都超过了98%,具有极其优秀的循环稳定性和充放电的可逆性。  相似文献   

5.
采用ZrO_2对正极材料LiNi_(0.5)Mn_(1.5)O_4进行包覆以提高材料的电化学性能,通过X射线衍射(XRD)、扫描电子显微镜(SEM)等测试手段表征ZrO_2包覆后材料的结构和形貌,通过电化学测试手段对包覆后的正极材料进行电化学性能分析,将测试结果与原相正极材料LiNi_(0.5)Mn_(1.5)O_4进行对比得到:ZrO_2包覆量为1.5%(质量分数)的样品表现出更高的放电比容量、更好的倍率性能以及更好的放电比容量保持率,在0.2 C放电倍率下材料的放电比容量首次表现可达129.5m Ah/g,在0.5 C放电倍率下经过50次循环后材料的容量保持率仍然高达95.4%;电化学循环伏安测试结果显示不同ZrO_2包覆量所制备的材料均具有4.7和4.0 V两个放电平台,材料属于Fd-3m空间群尖晶石结构。  相似文献   

6.
采用共沉淀法在LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2表面包覆Al PO4。利用X射线衍射仪、扫描电子显微镜和充放电测试技术研究Al P O4包覆对正极材料的晶体结构、微观形貌和电化学性能的影响。电化学性能测试结果表明:不同Al PO4包覆量对正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2物理性质、结构及电化学性能有显著影响。当采用Al PO4包覆量为1%时,循环性能最好,50次循环后,放电比容量仅降到176 m Ah/g,容量衰减最小,只有1.7%。表现出良好的电化学稳定性,同时材料的倍率性能也明显提高。  相似文献   

7.
《电池》2020,(4)
将共沉淀法和固相法相结合,将Si~(4+)掺杂到LiNi_(0.5)Mn_(0.5)O_2中,合成LiNi_(0.5-x)Si_(x )Mn_(0.5)O_2(0≤x≤0.08)正极材料。通过XRD及精修、等离子体发射光谱(ICP)、SEM和透射电子显微镜(TEM)等方法,对合成材料的结构、成分和形貌进行分析。Si~(4+)掺杂不仅可降低材料的锂镍混排程度,还能增强结构稳定性,且不会改变材料的形貌。以40 m A/g(0.2 C)的电流在2.5~4.5 V充放电,Li Ni_(0.47)Si_(0.03)Mn_(0.5)O_2(x=0.03)正极材料具有最好的电化学性能,不仅比容量(149.25 m Ah/g)较未掺杂材料(125.44 m Ah/g)提高20%,而且容量保持率在120次循环后也提高了7.7%。Si~(4+)掺杂能降低材料的锂镍混排程度,有利于Li~+的迁移;能提高材料的结构稳定性,抑制电压的下降并减轻极化。  相似文献   

8.
吴汉杰  梁兴华 《电源技术》2017,(11):1520-1521,1540
采用高温固相合成法制备锰基正极材料Li_(1.2)Ni_(0.13-x/3)Co_(0.13-x/3)Mn_(0.54-x/3)Cr_xO_2(x=0,0.01,0.02,0.03),其中合成的锰基正极材料Li_(1.2)Ni_(0.13-x/3)Co_(0.13-x/3)Mn_(0.54-x/3)Cr_xO_2(x=0.02)的粒径分布均匀、结晶程度极高和结构稳定性很好,在不同倍率0.1C、0.2 C、0.5 C、1 C和2 C下的放电比容量分别达到332.11、308.36、271.06、191.56、113.92 m Ah/g,并在0.1 C下循环50次后的放电比容量维持率为97%,所以少量Cr3+的掺杂对正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2的充放电比容量、倍率特性和循环稳定性等电化学性能更好。  相似文献   

9.
锂离子电池三元正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2具有可逆比容量高、成本低等优点,应用前景广阔。阐述了LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2的晶体结构特征及作为锂离子电池正极材料使用时的优、缺点;综述了LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2的制备方法及离子掺杂、表面包覆等对其电化学性能的影响;评述了LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2当前面临的主要问题及解决途径。  相似文献   

10.
采用高温固相法在相同条件下合成了LiNi_(0.6)Co_(0.1)Mn_(0.3)O_2与LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2正极材料,利用XRD、SEM表征了材料的结构与形貌,通过恒电流充放电测试、循环伏安(CV)和交流阻抗(EIS)研究了其电化学性能。结果表明,室温条件下以0.2 C倍率在3.0~4.3 V电压范围内,LiNi_(0.6)Co_(0.1)Mn_(0.3)O_2的首次放电比容量为171.8 mAh/g,1 C循环100次后容量保持率为78.5%;LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2的首次放电比容量为174.6 mAh/g,1 C循环100次后容量保持率为83.0%。CV与EIS测试表明,相比LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2,LiNi_(0.6)Co_(0.1)Mn_(0.3)O_2材料有更大的极化与电荷转移阻抗。  相似文献   

11.
采用LiFePO_4、LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2和LiMn_(0.8)Fe_(0.2)PO_4作为复合正极材料,考察了添加碳纳米管作导电剂对电池性能的影响。研究结果表明:以LiFePO_4、LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2和LiMn_(0.8)Fe_(0.2)PO_4作为复合正极材料所制作的电池具有较好的安全性能,在正极片中添加碳纳米管作导电剂后可以提高电池的放电比容量,改善电池的低温性能和倍率充放电性能。添加碳纳米管作导电剂后的电池具有极佳的循环稳定性,3 C循环500周容量保持率为95.34%,循环1 000周容量保持率为90.09%。  相似文献   

12.
采用共沉淀法合成球形前驱体Ni_(0.8)Mn_(0.2)(OH)_2,混合LiOH·H_2O通过高温烧结制备出锂离子电池镍基正极材料LiNi_(0.8)Mn_(0.2)O_2。通过X射线衍射(XRD)、扫描电镜(SEM)、热重-差热分析(TG-DTA)以及恒电流充放电测试对材料进行表征,研究了烧结温度和烧结气氛对材料结构、形貌和电化学性能的影响。结果表明:800℃纯氧气氛(0.6L/min)下煅烧12h合成的材料晶型完整,是典型的六方晶系α-NaFeO_2型结构;SEM测试显示材料平均粒径在10μm左右;电化学性能测试显示材料在25℃、2.75~4.20V、0.2C充放电条件下,首次放电比容量达173.6mAh/g,循环95次后,容量保持率达90.73%。  相似文献   

13.
采用Sol-Gel法和共沉淀法成功合成了尖晶石LiNi_(0.5)Mn_(1.5)O_4材料,通过X射线衍射(XRD)、扫描电子显微镜(SEM)以及电化学测试对不同合成方法对材料性能的影响进行表征。结果表明制备方法对材料的结构、形貌以及电化学性能具有较为重要的影响。  相似文献   

14.
通过碳酸盐共沉淀法和固相烧结法合成了锂离子电池正极材料Li[Ni_(0.56)Co_(0.19)Mn_(0.24)](1-x)Mg_xAl_(0.01)O_2(x=0,0.025,0.05和0.075)。通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学性能测试,考察了Mg~(2+)掺杂量对产物结构、形貌和电化学性能的影响。结果表明:适量Mg2+掺杂不会改变LiNi_(0.56)Co_(0.19)Mn_(0.24)Al_(0.01)O_2样品的α-NaFeO_2层状结构,并且可以提高材料在大倍率下的循环性能,LiNi_(0.546)Co_(0.185)Mn0.234Mg_(0.025)Al_(0.01)O_2具有最优的电化学性能,该样品在0.1 C下首次放电比容量为181.0 mAh/g,首次库仑效率为83.7%,在1 C下首次放电比容量为122.3 mAh/g,经过30次循环后容量保持率为98.0%。  相似文献   

15.
以共沉淀法制备LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2为基体,通过机械球磨制备石墨烯包覆的LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2正极材料。用SEM、XRD和电化学性能测试研究材料的形貌、晶体结构和电化学性能。制备的石墨烯包覆LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2正极材料具有较好的倍率特性和循环性能:200℃热处理的1.0%石墨烯包覆样品,在3.0~4.3 V充放电,4.0 C放电比容量达到144.3 mAh/g,比基体材料提高16.1%;以1.0 C循环100次的放电比容量达到151.2 mAh/g,循环性能良好。  相似文献   

16.
采用共沉淀法制备LiNi_(0.5)Mn_(0.5)O_2正极材料。并用X射线衍射(XRD),扫描电镜(SEM)对材料结构及形貌进行分析。讨论了不同保温时间对LiNi_(0.5)Mn_(0.5)O_2正极材料的影响,及不同电压下LiNi_(0.5)Mn_(0.5)O_2正极材料的电化学性能。结果表明,保温时间为16 h制备的正极材料电化学性能最优,在0.5 C倍率下,100次后容量保持率为99.02%;材料分别在2.75~4.2 V,2.75~4.3 V,2.75~4.35 V,2.75~4.4 V,2.75~4.5 V,2.75~4.6 V下进行充放电时,首次放电比容量分别135.6、143.6、154.1、165.5、177.9、184.1 m Ah/g。充放电电压越高,循环性能越差。  相似文献   

17.
采用新颖的一步共沉淀法合成富锂锰基Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2正极材料。通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学测试对合成材料的晶体结构、形貌及电化学性能进行了测试和表征。结果表明,所制备Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2正极材料具有较好的多面体形貌,材料颗粒粒径小于500 nm。在2.0~4.8 V充放电区间内,在18 m A/g进行充放电,所制备材料的首次放电比容量达到209.0 m Ah/g,循环50次后容量保持率为87.7%。  相似文献   

18.
以NiCl_2·6 H_2O和MnCl_2·4 H_2O为原料,采用溶剂热法可制备出Ni_(0.5)Mn_(1.5)(CO_3)_2前驱体,将前驱体进行空烧和锂化可成功制备出具有高电位的LiNi_(0.5)Mn_(1.5)O_4正极材料。分别从磁力搅拌混合的搅拌速率与时间,以及空烧、锂化工艺的影响因素出发,探讨了不同条件下合成前驱体Ni_(0.5) Mn_(1.5)(CO_3)_2、中间产物Ni_3Mn_7O_x及终产物LiNi_(0.5)Mn_(1.5)O_4的结构与形貌。对得到的正极材料LiNi_(0.5)Mn_(1.5)O_4进行电化学性能测试,结果表明:添加非离子活性剂PVP后,慢速下磁力搅拌时间4 h,控制反应温度200℃,反应时间30 min时得到的前驱体结构均匀,并通过空气中500℃处理(1℃/min),800℃条件下在LiOH∶Li_2NO_3=1∶2 (摩尔比)中锂化5 h,以0.5℃/min降温速率得到的正极材料LiNi_(0.5)Mn_(1.5)O_4具有最优的电化学性能。在0.1 C条件下放电比容量可达到150 mAh/g以上,且倍率性能和循环稳定性好。  相似文献   

19.
以LiNO_3、Ni(NO_3)_2·6 H_2O、Co(CH_3COO)_2·4 H_2O和Mn(CH_3COO)_2·4 H_2O为原料,用燃烧法制备了富锂层状锂离子电池正极材料Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2和不同La掺杂量的正极材料Li[Li_(0.2)Mn_(0.54-x)Ni_(0.13)Co_(0.13)La_x]O_2(x=0,0.01,0.03,0.05)。对制备的样品进行了XRD、S EM、EDS、电池充放电循环、EIS等表征和测试,进一步分析了掺La量对该富锂正极材料结构、形貌及电化学性能的影响。实验结果表明,掺杂前后的四种材料都具有典型的层状α-Na FeO_2结构,说明掺杂后并未改变材料的层状结构;在2.0~4.7 V充放电,当电流为0.1 C(1 C=200 mA/g)时,制备的正极材料Li-[Li_(0.2)Mn_(0.54-x)Ni_(0.13)Co_(0.13)La_x]O_2(x=0.03)具有最高的首次充放电比容量,分别为250.51和179.45 mAh/g,其首次库仑效率从Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2的63.5%提高到71.6%,以0.5 C循环50次,放电比容量保持在136.05 mAh/g。  相似文献   

20.
尖晶石结构正极材料LiNi_(0.5)Mn_(1.5)O_4因具有理论比容量高、比能量大、放电平台高(~4.7 V)、价格低廉等优点而备受关注。但该材料循环性能和倍率性能不佳,制约着材料的推广应用。主要综述通过掺杂、包覆、形貌控制等手段来提高该材料电化学性能的最新研究进展,旨在为提升该材料性能的相关研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号