首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skelte G Anema  Edwin K Lowe 《LWT》2004,37(7):779-787
Reconstituted skim milk samples at pH between 6.5 and 7.1 (heating pH) were heated at 80°C, 90°C or 100°C for 30 min (heating temperature). The particle size of the casein micelles was measured at pH 4.75-7.1 (measurement pH) and at temperatures of 10°C, 20°C and 30°C (measurement temperature) using photon correlation spectroscopy. The particle size of the casein micelles, at a measurement pH of 6.7 and a measurement temperature of 20°C, was dependent on the heating pH and heating temperature to which the milk was subjected. The casein micelle size in unheated milk was about 215 nm. At a heating pH of 6.5, the casein micelle size increased by about 15, 30 and 40 nm when the milk was heated at 80°C, 90°C or 100°C, respectively. As the heating pH of the milk was increased, the size of the casein micelles decreased so that, at pH 7.1, the casein micelles were ∼20 nm smaller than those from unheated milk. Larger effects were observed as the heating temperature was increased from 80°C to 100°C. The size differences as a consequence of the heating pH were maintained at all measurement temperatures and at all measurement pH down to the pH at which aggregation of the micelles was observed. For all samples, size measurements at 10°C showed no aggregation at all measurement pH. Aggregation occurred at progressively higher pH as the measurement temperature was increased. Aggregation also occurred at a progressively higher measurement pH as the heating pH was increased. The particle size changes on heating and the aggregation on subsequent acidification may be related to the pH dependence of the association of whey proteins with, and the dissociation of κ-casein from the casein micelles as milk is heated.  相似文献   

2.
The lipoprotein lipase and tributyrate hydrolysing activities were found to be similarly distributed in the fractions obtained when whole milk was separated into skim-milk and cream, and when the cream was washed and freed from lipid. These enzyme activities in skim-milks and in extracts of lipid-free cream could not be separated by affinity chromatography on heparin-Sepharose. The enzymes were inactivated to the same degree when incubated at 37 degrees C in the presence of 1-5 M-NaCl, pH 8-5, and both showed marked decrease in stability at 4 degrees C in UV-light caused the same decrease in both lipoprotein lipase and tributyrate hydrolysing activities. An antiserum against a highly purified skim-milk lipoprotein lipase caused total inhibition of the lipoprotein lipase and tributyrate hydrolysing activities in skim-milk and in extracts of lipid-free cream. It is suggested that in bovine milk there is only one major lipase and that it is identical to lipoprotein lipase.  相似文献   

3.
Curcumin, a polyphenolic compound present in turmeric, is a hydrophobic molecule that has been shown to bind to casein micelles. The present work tested the hypothesis that surface changes in the casein micelles caused by heat-induced interactions with the whey proteins would affect the binding of curcumin. Binding was quantified by direct and tryptophan quenching fluorescence spectroscopy. Curcumin binds to the hydrophobic moieties of the casein proteins, with a 10 nm blue shift in its fluorescence emission peak, and causes quenching of the intrinsic fluorescence spectra of the proteins. The fluorescence intensity of curcumin increased after heating of milk at 80 °C for 10 min; a similar trend in the binding constants was also observed with casein micelles separated from the soluble proteins by centrifugation. There was an increase in the non-specific interactions with heating milk at 80 °C for 10 min, both in milk as well as in casein micelles separated from the serum proteins. The increased capacity of milk proteins to bind curcumin after heat treatment can be attributed to whey protein denaturation, as whey proteins bind to the surface of casein micelles with heating.  相似文献   

4.
Buffalo skim-milk is less heat stable than cow skim-milk. Interchanging ultracentrifugal whey (UCW) and milk diffusate with micellar casein caused significant changes in the heat stability of buffalo casein micelles (BCM) and cow casein micelles (CCM). Buffalo UCW dramatically destabilized CCM, whereas buffalo diffusate with CCM exhibited the highest heat stability. Cow kappa-casein stabilizes alphas-casein against precipitation by Ca better than buffalo kappa-casein. About 90% of alphas-casein could be stabilized by kappa:alphas ratios of 0.20 and 0.231 for cow and buffalo, respectively. Sialic acid release from micellar kappa-casein by rennet was higher than from acid kappa-casein in both buffalo and cow caseins, the release being slower in buffalo. The released macropeptide from buffalo kappa-casein was smaller than that from cow kappa-casein as revealed by Sephadex gel filtration. Sub-units of BCM have less sialic acid (1.57 mg/g) than whole micelles (2.70 mg/g). On rennet action, 47% of bound sialic acid was released from sub-units as against 85% from whole micelles. The sub-micelles are less heat stable than whole micelles. Among ions tested, added Ca reduced heat stability more dramatically in whole micelles, whereas added phosphate improved the stability of micelles and, more strikingly, of sub-micelles. Citrate also improved the heat stability of sub-micelles but not of whole micelles.  相似文献   

5.
Zhongli Pan  Connie Shih  Edward Hirschberg 《LWT》2008,41(10):1944-1951
The drying and quality characteristics of banana slices processed with a sequential infrared radiation and freeze-drying (SIRFD) method were investigated. Cavendish bananas slices with 5 mm thickness were predehydrated using IR heating at each one of three radiation intensities, 3000, 4000, and 5000 W/m2 or hot air at 62.8 °C. The predehydrated samples with 20% and 40% weight reductions obtained using 4000 W/m2 IR intensity were then further dried using freeze-drying for various times to determine the effect of predehydration on the drying rate during freeze-drying. To improve the quality of dried banana chips, the banana slices were also treated with a dipping solution containing 10 g/l ascorbic acid and 10 g/l citric acid before the IR predehydration. Control samples were produced using regular freeze-drying without the predehydration. The quality characteristics of dried banana chips, including color, thickness shrinkage and crispness, were evaluated. The predehydration results showed that the drying rate of IR heating was significantly higher than the hot air drying and increased with the increase of IR intensity. For example, it took 10 and 38 min to achieve 40% weigh reduction by using IR at 4000 W/m2 and hot air drying, respectively. However, the banana slices with IR predehydration dried slower during freeze-drying compared to the samples without predehydration, which was due to texture changes that occurred during the predehydration. Acid dipping improved product color and also reduced freeze-drying time compared to non-dipped samples. It has been concluded that SIRFD can be used for producing high crispy banana chips and additional acid dipping improved product color and reduced required freeze-drying time.  相似文献   

6.
For 17 phages active against Streptococcus cremoris, Str. lactis and Str. lactis subsp. diacetylactis, the killing efficiency of pasteurization (log No/N) at 72 degrees C for 15 s in skim-milk showed large variations from greater than 6 to 0; the efficienty of killing during spray-drying ranged from 3.7 to 0.2 and phages survived well storage of milk powder at room temperature. Destruction in a heat exchanger was found to be greater than that calculated from biphasic curves obtained by heating phages in sealed ampoules. No relationship was established between lytic classification of phages and their heat resistance.  相似文献   

7.
ABSTRACT: The addition of sodium dodecyl sulfate (SDS) during skim-milk reconstitution contributed to a modification of hydrophobic interactions and, consequently, to change in the micellar structure. SDS-induced modifications in casein micelles were investigated by biochemical measurements (soluble mineral and protein analyses, granulometric and electrokinetic potential measurements, and casein micelle solvation). SDS induced micellar κ-casein dissociation and caused a decrease in steric, hydration, and electrostatic repulsive forces between casein micelles and as a result altered micellar stability. Consequently, SDS-modified micelle aggregation occurred. Mineral analysis indicated that Ca, PO43- and Mg partitioning between aqueous phase and curd is similar, suggesting a possible bridging mechanism via minerals and SDS molecules.  相似文献   

8.
Heating, pressurization, and shearing can modify native milk proteins. The effects of pressurized heating (0.5 vs. 10 MPa at 75 or 95°C) with shearing (1,000 s?1) on proteins of raw bovine skim milk (SM, ~9% total solids) and concentrated raw skim milk (CSM, ~22% total solids) was investigated. The effects of evaporative concentration at 55°C and pressurized shearing (10 MPa, 1,000 s?1) at 20°C were also examined. Evaporative concentration of SM resulted in destabilization of casein micelles and dissociation of αS1- and β-casein, rendering CSM prone to further reactions. Treatment at 10 MPa and 1,000 s?1 at 20°C caused substantial dissociation of αS1- and β-casein in SM and CSM, with some dissociated caseins forming shear-induced soluble aggregates in CSM. The pressure applied at 10 MPa induced compression of the micelles and their dissociation in SM and CSM at 75 or 95°C, resulting in reduction of the micelle size. However, 10 MPa did not alter the mineral balance or whey proteins denaturation largely, except by reduction of some β-sheets and α-helices, due to heat-induced conformational changes at 75 and 95°C.  相似文献   

9.
Heat-induced inactivation of bovine plasmin, denaturation of beta-lactoglobulin (beta-lg), the interactions between both species and casein micelles and the subsequent net effect on proteolysis of beta-casein was studied in a model system consisting of phosphocasein and beta-lg in synthetic milk ultrafiltrate. The inactivation of plasmin and denaturation of beta-lg were first order reactions, with the rate of inactivation of plasmin being greater than the rate of denaturation of beta-lg. The predominant mechanism involved in the denaturation of plasmin in the temperature range 65-80 degrees C was its interaction with beta-lg (kr at 60 degrees C, 0.0526; Ea, 176 KJ/mol). At the point of complete inactivation of plasmin approximately 45% of the beta-lg remained undenatured. Thermal inactivation of plasmin through other mechanisms was negligible. The association of beta-lg with the casein micelles at 60 degrees C had a rate constant of 3.71 x 10-5 min-1 and an Ea of 259 KJ/mol; thermal denaturation of beta-lg was of much less importance, with a rate constant at 60 degrees C of the order of 1 x 10-10 min-1 and an Ea of 250 KJ/mol. On denaturation of all beta-lg in the system, a maximum of approximately 55% was associated with the casein micelles. The effect of heating on the subsequent hydrolysis of beta-casein indicated that the level of plasmin activity was the most important factor affecting proteolysis, while the interaction of beta-lg with the casein micelles had limited effect. Overall, thermal stability of plasmin in milk is very much dependent upon its interaction with beta-lg.  相似文献   

10.
Skim milk was adjusted to pH values between 6.5 and 7.1 and heated at 90 °C for times from 0 to 30 min. After heat treatment, the samples were re-adjusted to the natural pH (pH 6.67) and allowed to re-equilibrate. High levels of denatured whey proteins associated with the casein micelles during heating at pH 6.5 (about 70-80% of the total after 30 min of heating). This level decreased as the pH at heating was increased, so that about 30%, 20% and 10% of the denatured whey protein was associated with the casein micelles after 30 min of heating at pH 6.7, 6.9 and 7.1, respectively. Increasing levels of κ-casein were transferred to the serum as the pH at heating was increased. The loss of κ-casein and the formation of para-κ-casein with time as a consequence of the chymosin treatment of the milk samples were monitored by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The loss of κ-casein and the formation of para-κ-casein were similar for the unheated and heated samples, regardless of the pH at heating or the heat treatment applied. Monitoring the gelation properties with time for the chymosin-treated milk samples indicated that the heat treatment of the milk markedly increased the gelation time and decreased the firmness (G) of the gels formed, regardless of whether the denatured whey proteins were associated with the casein micelles or in the milk serum. There was no effect of pH at heat treatment. These results suggest that the heat treatment of milk has only a small effect on the primary stage of the chymosin reaction (enzymatic phase). However, heat treatment has a marked effect on the secondary stage of this reaction (aggregation phase), and the effect is similar regardless of whether the denatured whey proteins are associated with the casein micelles or in the milk serum as nonsedimentable aggregates.  相似文献   

11.
Water vapour sorption isotherms of casein micelles prepared from raw milk and various heat-treated milks were determined. The equilibrium water contents of the heated preparations were markedly lower than that of the raw-milk casein over the whole range of vapour pressures studied. An analysis of the sorption isotherms in the relative vapour pressure range 0.1--0.45, according to the Brunauer, Emmett & Teller (1938) equation, showed that there were significant differences between preparations in the computed monolayer contents. Differences in the rates of water sorption were also observed between the different preparations. As judged from the amount of absorbed water, the influence of the heating methods could be ranked in the order: HTST (92 degrees C) approximately UHT (direct) less than UHT (indirect) less than HTST (72 degrees C).  相似文献   

12.
When kappa-casein (kappa-CN) was added to milk, and the milk was subsequently pH adjusted (pH 6.5-6.9) and heated (90 degrees C/15 min), the serum contained considerably higher levels of denatured whey proteins than the milks without added kappa-CN. When milk at pH 6.5-6.9 was heated at 90 degrees C for different times, kappa-CN was found in the serum in the early stages of heating and before significant levels of whey proteins were denatured. kappa-CN reached its maximum level in the serum before the whey proteins were fully denatured. When milk at pH 6.5-6.9 was heated at 20-90 degrees C for 15 min, kappa-CN dissociated from the casein micelles at all temperatures, with the level in the serum increasing with the temperature and the pH at heating. kappa-CN dissociated from the micelles at temperatures below those at which significant levels of the whey proteins were denatured. When taken together, the results from these experiments strongly indicate that the dissociation of kappa-CN from the micelles can precede the interaction of the denatured whey proteins with kappa-CN, and that there is a preferential interaction of the denatured whey proteins with serum-phase kappa-CN.  相似文献   

13.
High pressure homogenisation (HPH) is a novel dairy processing tool, which has many effects on enzymes, microbes, fat globules and proteins in milk. The effects of HPH on milk are due to a combination of shear forces and frictional heating of the milk during processing; the relative importance of these different factors is unclear, and was the focus of this study. The effect of milk inlet temperature (in the range 10-50 degrees C) on residual plasmin, alkaline phosphatase, lactoperoxidase and lipase activities in raw whole bovine milk homogenised at 200 MPa was investigated. HPH caused significant heating of the milk; outlet temperature increased in a linear fashion (0.5887 degrees C/ degrees C, R2=0.9994) with increasing inlet temperature. As milk was held for 20 s at the final temperature before cooling, samples of the same milk were heated isothermally in glass capillary tubes for the same time/temperature combinations. Inactivation profiles of alkaline phosphatase in milk were similar for isothermal heating or HPH, indicating that loss of enzyme activity was due to heating alone. Loss of plasmin and lactoperoxidase activity in HPH milk, however, was greater than that in heated milk. Large differences in residual lipase activities in milks subjected to heating or HPH were observed due to the significant increase in lipase activity in homogenised milk. Denaturation of beta-lactoglobulin was more extensive following HPH than the equivalent heat treatment. Inactivation of plasmin was correlated with increasing fat/serum interfacial area but was not correlated with denaturation of beta-lactoglobulin. Thus, while some effects of HPH on milk are due to thermal effects alone, many are induced by the combination of forces and heating to which the milk is exposed during HPH.  相似文献   

14.
Heating milk at 120°C at pH 6.55 or pH 6.85 caused the denaturation of whey proteins and increased their association with the casein micelles. The dissociation of K -, β-, and αs-caseins (in that order by extent) from the casein micelles increased with severity of heat treatment. The effect was greater at higher pH. Gel filtration chromatography followed by gel electrophoresis of fractions showed the dissociated protein was composed of disulfide-linked k -casein/β-lactoglobulin complexes of varying composition, casein aggregates of varying sizes and some monomeric protein. When reconstituted concentrate was prepared from NFDM made from heated milk the non-sedimentable (88,000 ± g for 90 min) caseins or whey proteins/heating time profiles were altered and the rate of aggregation, as measured by turbidity of heated milks, was significantly reduced.  相似文献   

15.
An extracellular proteinase-and lipase-deficient mutant of a psychrotroph, Pseudomonas fluorescens strain 32A, has been isolated and the absence of the proteinase enzyme confirmed by growth on differential media, enzyme assay and polyacrylamide gel electrophoresis. Competition between the parent and the mutant was observed when equal numbers of the 2 strains were inoculated together into raw skim-milk at 6 degrees C. Bitterness was detected at 6 degrees C in pasteurized skim-milk inoculated with the parent cells concurrent with the detection of proteolytic activity. In the case of the mutant, slight bitterness which did not increase with increasing cell numbers was detected in the absence of proteolysis. Mutant cells failed to grow on Na caseinate as the sole source of carbon. It was concluded that the extracellular proteinase, while not essential for growth in milk, does provide a selective advantage to the producer organism. This enzyme is, however, essential for growth on milk proteins and contributes to the development of bitterness in pasteurized milk.  相似文献   

16.
Heat (85 degrees C for 20 min) and pressure (600 MPa for 15 min) treatments were applied to skim milk fortified by addition of whey protein concentrate. Both treatments caused > 90 % denaturation of beta-lactoglobulin. During heat treatment this denaturation took place in the presence of intact casein micelles; during pressure treatment it occurred while the micelles were in a highly dissociated state. As a result micelle structure and the distribution of beta-lactoglobulin were different in the two milks. Electron microscopy and immunolabelling techniques were used to examine the milks after processing and during their transition to yogurt gels. The disruption of micelles by high pressure caused a significant change in the appearance of the milk which was quantified by measurement of the colour values L*, a* and b*. Heat treatment also affected these characteristics. Casein micelles are dynamic structures, influenced by changes to their environment. This was clearly demonstrated by the transition from the clusters of small irregularly shaped micelle fragments present in cold pressure-treated milk to round, separate and compact micelles formed on warming the milk to 43 degrees C. The effect of this transition was observed as significant changes in the colour indicators. During yogurt gel formation, further changes in micelle structure, occurring in both pressure and heat-treated samples, resulted in a convergence of colour values. However, the microstructure of the gels and their rheological properties were very different. Pressure-treated milk yogurt had a much higher storage modulus but yielded more readily to large deformation than the heated milk yogurt. These changes in micelle structure during processing and yogurt preparation are discussed in terms of a recently published micelle model.  相似文献   

17.
《Journal of dairy science》2022,105(5):3871-3882
The interactions among the proteins in sheep skim milk (SSM) during heat treatments (67.5–90°C for 0.5–30 min) were characterized by the kinetics of the denaturation of the whey proteins and of the association of the denatured whey proteins with casein micelles, and changes in the size and structure of casein micelles. The relationship between the size of the casein micelles and the association of whey proteins with the casein micelles is discussed. The level of denaturation and association with the casein micelles for β-lactoglobulin (β-LG) and α-lactalbumin (α-LA) increased with increasing heating temperature and time; the rates of denaturation and association with the casein micelles were markedly higher for β-LG than for α-LA in the temperature range 80 to 90°C; the Arrhenius critical temperature was 80°C for the denaturation of both β-LG and α-LA. The casein micelle size increased by 7 to 120 nm, depending on the heating temperature and the holding time. For instance, the micelle size (about 293 nm) of SSM heated at 90°C for 30 min increased by about 70% compared with that (about 174.6 nm) of unheated SSM. The casein micelle size increased slowly by a maximum of about 65 nm until the level of association of the denatured whey proteins with casein micelles reached 95%, and then increased markedly by a maximum of about 120 nm when the association level was greater than about 95%. The marked increases in casein micelle size in heated SSM were due to aggregation of the casein micelles. Aggregation of the casein micelles and association of whey protein with the micelles occurred simultaneously in SSM during heating.  相似文献   

18.
When skim milk at pH 6.55 was heated (75 to 100 degrees C for up to 60 min), the casein micelle size, as monitored by photon correlation spectroscopy, was found to increase during the initial stages of heating and tended to plateau on prolonged heating. At any particular temperature, the casein micelle size increased with longer holding times, and, at any particular holding time, the casein micelle size increased with increasing temperature. The maximum increase in casein micelle size was about 30-35 nm. The changes in casein micelle size were poorly correlated with the level of whey protein denaturation. However, the changes in casein micelle size were highly correlated with the levels of denatured whey proteins that were associated with the casein micelles. The rate of association of the denatured whey proteins with the casein micelles was considerably slower than the rate of denaturation of the whey proteins. Removal of the whey proteins from the skim milk resulted in only small changes in casein micelle size during heating. Re-addition of beta-lactoglobulin to the whey-protein-depleted milk caused the casein micelle size to increase markedly on heat treatment. The changes in casein micelle size induced by the heat treatment of skim milk may be a consequence of the whey proteins associating with the casein micelles. However, these associated whey proteins would need to occlude a large amount of serum to account for the particle size changes. Separate experiments showed that the viscosity changes of heated milk and the estimated volume fraction changes were consistent with the particle size changes observed. Further studies are needed to determine whether the changes in size are due to the specific association of whey proteins with the micelles or whether a low level of aggregation of the casein micelles accompanies this association behaviour. Preliminary studies indicated lower levels of denatured whey proteins associated with the casein micelles and smaller changes in casein micelle size occurred as the pH of the milk was increased from pH 6.5 to pH 6.7.  相似文献   

19.
The purpose of this study was to evaluate the effects of processing, i.e. heating (98 °C, 10 min), freezing (−20 °C) and freeze-drying on anthocyanins, carotenoids, and vitamin C in summer fruits and vegetables, i.e. cherries, nectarines, apricots, peaches, plums, carrots and red bell peppers. The commodities were collected from growers located in the Otago region (namely Cromwell, Roxburgh, Mosgiel and Clinton), New Zealand. The results revealed that each commodity contained different contents of phytochemicals. The content and the process stability of phytochemicals in each commodity were influenced by the geographical location of the growers. In general, a high content of phytochemicals was found in summer fruits and vegetables grown in Otago compared to those grown in the Northern Hemisphere, e.g. anthocyanins in cherries, nectarines, peaches and plums; total carotenoids in red bell peppers and nectarines and vitamin C in cherries, peaches, red bell peppers and carrots. Heating and freezing enhanced the release of membrane bound anthocyanins, resulting in higher content after processing compared to fresh commodities. In the commodities studied, with the exception of red bell peppers, the stability of ascorbic acid was increased if ascorbic acid oxidase was inactivated for example by heating.  相似文献   

20.
Milk protein solutions [10% protein, 40/60 whey protein/casein ratio containing whey protein concentrate (WPC) and low-heat or high-heat milk protein concentrate (MPC)] containing fat (4% or 14%) and 70–80% water, form gels with interesting textural and functional properties if heated at high temperatures (90 °C, 15 min; 110 °C, 20 min) without stirring. Adjustment of pH before heating (HCl or glucono-δ-lactone) produces soft, spoonable gels at pH 6.25–6.6, but very firm, cuttable gels at pH 5.25–6.0. Gels made with low-heat MPC, WPC and low fat gave some syneresis; high-fat gels were slightly firmer than low-fat gels. Citrate markedly reduced gel firmness; adding calcium had little effect on firmness, but increased syneresis of low-heat MPC/WPC gels. The gels showed resistance to melting, and could be boiled or fried without flowing. Microstructural analysis indicated a network structure of casein micelles and fat globules interlinked by denatured whey proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号