首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
王会芳  杨瑞洪 《广州化工》2014,(17):113-114,203
采用Fenton法对高浓度制药废水进行预处理实验。主要考察了Fenton试剂氧化法预处理高浓度制药废水的影响因素,主要讨论pH值、FeSO4·7H2O投加量、反应时间对Fenton氧化工艺对制药废水中CODCr处理效果的影响。实验结果显示,pH值为4、反应时间100 min、FeSO4·7H2O投加量为0.024 mol/L、H2O2/Fe2+投加比为11∶1,CODCr处理去除率为52.1%,可生化性BOD/COD为0.57,效果最为理想。  相似文献   

2.
采用Fenton试剂对甲醛废水进行氧化处理,考察了H2O2浓度、Fe2+浓度、pH值、反应时间等因素对处理效果的影响。在H202投加量为4.5ml/L,n(H202):n(Fe2+)=4,pH值为3,反应30rain后,静置5min的条件下,废水中甲醛去除率和COD去除率分别达到89%、82%。结果表明,Fenton试剂对甲醛废水可以取到很好的处理效果。  相似文献   

3.
采用超声强化Fenton(Fe2++H2O2)试剂,耦合氧化深度处理山梨酸废水。考察了超声功率、反应时间、反应温度、pH值、试剂投加量对CODCr去除率的影响。结果表明:在超声频率40kHz,超声功率400W,反应时间40min、反应温度60℃、pH值3.0、H2O2浓度0.22mol/L、Fe2+浓度0.04mol/L时,CODCr去除率达到95%以上。与单独使用Fenton试剂法相比,该方法反应时间短、反应温度低、试剂投加量小、CODCr去除率高。  相似文献   

4.
采用超声强化Fenton(Fe^2++H2O2)试剂,耦合氧化深度处理山梨酸废水。考察了各因素对COD去除率的影响,结果表明,在超声频率40kHz、功率为400W。反应时间为40min、温度为60℃,pH为3.0.H2O2和Fe^2+的浓度分别为0.22和0.04mol/L时,COD去除率达到95%以上.与单独使用Fenton试剂法相比.该方法反应时间短、反应温度低、试剂投加量小、COD去除率高。  相似文献   

5.
深度氧化技术处理皂素废水的研究   总被引:1,自引:0,他引:1  
刘智峰 《杭州化工》2012,42(3):19-21
采用Fenton试剂深度氧化技术处理皂素废水,研究了FeSO4·7H2O投加量、H2O2投加量、pH值和反应时间4个因素对废水中COD去除效果的影响。实验结果表明,当FeSO4·7H2O投加量为7g/L,H2O2投加量为170g/L,pH值为4,反应时间为50min条件下,COD去除效果最佳,可达到88.23%。各因素对COD去除率影响的强弱顺序为:H2O2投加量>FeSO4·7H2O投加量>pH值。  相似文献   

6.
用Fenton试剂处理丁苯橡胶废水,考察了H2O2和FeSO4的用量、初始pH值、反应时间以及反应温度对废水化学需氧量(COD)去除率的影响。结果表明,适宜的处理条件为H2O2(以1 L废水计)8 mL、FeSO4质量浓度1.0 g/L、初始pH值3~10、反应时间30 min、反应温度40℃,在此条件下废水COD的去除率可超过55%。  相似文献   

7.
Fenton试剂-活性炭吸附处理焦化废水的研究   总被引:4,自引:0,他引:4  
王春敏  吴少艳  王维军 《辽宁化工》2006,35(7):388-390,406
对Fenton试剂-活性炭吸附联用技术处理焦化废水进行了研究。首先考察了pH值、H2O2投加量、[Fe^2+]/[H2O2]等因素对Fenton试剂氧化处理效果的影响以及Fenton试剂氧化阶段H2O2投加量对活性炭吸附效果的影响;然后考察活性炭投加量、吸附时间、pH值等因素对活性炭吸附阶段处理效果的影响。结果表明,Fenton试剂-活性炭吸附工艺处理焦化废水的最佳操作条件为:Fenton试剂氧化阶段H2O2投加量为55mmol/L,[Fe^2+]/[H2O2]=1:10,初始pH=3;活性炭吸附阶段活性炭投加量为2.5g/L,pH=3,吸附时间30min。在此操作条件下,焦化废水COD去除率达97.5%。  相似文献   

8.
UV/Fenton处理苯酚废水的研究   总被引:1,自引:0,他引:1  
采用UV/Fenton联合体系降解苯酚模拟废水,苯酚的初始质量浓度为300mg/L,COD。的初始质量浓度为760mg/L。探讨了pH值、H202(30%)和FeSO4·7H2O投加量、反应时间等因素对苯酚和CODcr去除率的影响。结果表明,UV/Fenton联合体系降解苯酚废水的最佳工艺条件是:溶液pH值为3、H2O2投加量为2.5mL/L、FeS04·7H20投加量为0.020g/L、反应时间为90min。此时,苯酚的去除率为95%,CODcr的去除率为90%。UV/Fenton联合体系能较好地处理苯酚废水。  相似文献   

9.
紫外光Fenton试剂法处理合成洗涤剂废水研究   总被引:2,自引:0,他引:2  
采用紫外光辅以Fenton试剂对合成洗涤剂废水进行深度处理。通过试验,讨论了H2O2、FeSO4。7H2O的量、pH值、紫外光波长、光照时间的影响,选定了最佳条件:Fe^2 浓度为44.5mg/L,H2O2浓度为1656mg/L,溶液的pH值为3,紫外光波长范围240~300nm。并进一步做了循环式流动态试验,为合成洗剂废水的深度处理提供了依据。  相似文献   

10.
含芳香族化合物废气吸收液的氧化预处理   总被引:1,自引:1,他引:0  
吸收法净化含芳香族污染物废气的吸收液具有COD浓度高,难生物降解的特点,采用Fenton试剂对模拟喷漆车间含二甲苯废气的吸收液进行氧化预处理,考察了H2O2和Fe2+浓度、pH、反应时间等因素对COD去除效果的影响。在H2O2投加量为0.39 mol/L,FeSO4.7H2O投量为16.32 mmol/L,pH为7.4,反应1 h的条件下,初始COD为12850 mg/L的废水的COD去除率可达到71.36%。结果表明,Fenton试剂对该废水可以取到很好的预处理作用。  相似文献   

11.
马铃薯淀粉废水的综合处理工艺研究   总被引:1,自引:0,他引:1  
实验以H2O2/Fe2+为氧化剂,与改性膨润土处理马铃薯淀粉废水,并考察了不同浓度H2O2的加入量、FeSO4加入量、pH值、反应时间及膨润土的加入量对COD去除率和脱色率的影响。结果表明,在反应条件为10%H2O2投加量10mL/L,0.1mol/L FeSO4加入量20mL/L,改性膨润土的用量40g/L,pH=4.0,反应时间1h时,COD去除率和脱色率分别达90%和98%。  相似文献   

12.
采用Fenton-铁氧体法处理含铜模拟废水。在pH值3.0、温度40℃、反应时间10 min、H_2O_20.60mL/L、FeSO_4·7H_2O 7.08g/L的条件下,Cu~(2+)的去除率达到92.88%,残余Cu~(2+)的质量浓度为3.56 mg/L。铁氧体法的最优工艺条件为:沉淀pH值10.0,反应时间15 min,温度30℃,FeSO_4·7H_2O 0.154g/L,FeCl_3·6H_2O 0.225g/L。在Fenton-铁氧体法的优化条件下,Cu~(2+)的去除率达到98.28%,残余Cu~(2+)的质量浓度为0.86mg/L,达到排放标准。  相似文献   

13.
首先用活化粉煤灰预处理焦化废水,COD去除率最大可达17%。然后利用Fenton试剂和PAM联合作用对焦化废水深度处理,单因素实验和正交试验结果表明,当pH=5,H2O2投加量为3mL/L,FeSO4·7H2O的投加量为6g/L,PAM的投加量为0.5g/L,反应时间为2h,处理效果最佳,COD和色度的去除率分别可达去90.8%和91.25%。各因素对COD去除率影响的强弱顺序为:PAM投加量〉pH值〉H2O2投加量〉FeSO4·7H2O投加量。  相似文献   

14.
Fenton氧化-混凝法处理DSD酸生产废水   总被引:1,自引:1,他引:0  
采用Fenton氧化-混凝法对DSD酸还原段生产废水进行处理,得出最佳Fenton氧化条件:pH值为3、H2O2投加量为1 mL/L(分3次投加)、FeSO4.7H2O投加量为200 mg/L、反应时间为45 min;混凝条件:pH值为10,聚丙烯酰胺投加量为3 mg/L。试验结果表明,该组合工艺处理COD的质量浓度为516 mg/L、色度为500倍的废水,其COD、色度的去除率分别达到81.0%、98.0%。  相似文献   

15.
Fenton试剂预处理亚麻生产废水   总被引:1,自引:0,他引:1  
采用Fenton试剂预处理亚麻生产废水。探讨了pH值、反应时间、H2O2投加量、FeSO4.7H2O投加量对去除CODCr的影响。试验结果表明:在pH值为4.5,反应时间为60 min,H2O2投加量为5 mL/L,FeSO4.7H2O投加量为1 500 mg/L,H2O2的投加为分批次的连续投加方式时,CODCr去除率为45%,m(BOD5)/m(CODCr)由0.21提高到0.53,出水中检测不到SS的存在,为后续生化处理创造了有利条件。  相似文献   

16.
Fenton试剂深度处理胃必治制药废水   总被引:9,自引:2,他引:7  
胃必治制药废水COD值高且负荷变化大,pH值低,是一种难处理的有机废水。经常规工艺处理后,出水有时仍难达标。采用Fenton试剂对出水进行了氧化降解研究,通过测定废水的COD、UV254值变化以评价氧化的效果,考察了常压下Fenton试剂配比、投加量、氧化时间、温度等因素对制药废水处理效果的影响,初步发现了其氧化规律。在单因素试验的基础上采用正交试验方案,确定最佳工艺条件为:浓度为1mol/L的FeSO4与质量分数为3%的H2O2的体积比为1:2、投加量为150mL/L、反应时间为90min、反应温度为60℃、pH值为3。COD的去除率达到89.50%,出水COD的质量浓度降到了66mg/L以下,达到国家排放标准要求。  相似文献   

17.
用微波-Fenton氧化法深度处理焦化废水,研究了微波处理时间、微波功率、FeSO4投加量、H2O2投加量、H2O2投加次数和pH值的影响。实验确定的最佳工艺条件为:废水pH为3,FeSO4投加量为300mg/L,H2O2总投加量为900mg/L,H2O2分3次投加,微波功率500W,温度设为50℃,反应时间为30min。废水浊度、色度和COD去除率分别为97.59%、95.62%、86.21%。处理后的废水澄清透明,剩余COD为50.34mg/L,浊度、色度和COD达到工业回用水标准。  相似文献   

18.
为进一步提高镍基电极的析氢性能,采用恒电位沉积法,通过改变镀液中各合金的质量浓度比、沉积电位、沉积时间等条件,制备出一种高活性的镍钴铁三元合金电极。通过测定电极在1 mol/L的NaOH溶液中的极化曲线,得到最佳的沉积工艺条件为:36.25 g/L NiSO_4·6H_2O,1.25 g/L NiCl_2·6H_2O,5 g/L CoSO_4·7H_2O,7.5 g/L FeSO_4·7H_2O,10 g/L H_3BO_3,0.5 g/L抗坏血酸,1 g/L十二烷基硫酸钠,pH=4.0,电沉积电位-1.45 V,电沉积时间300 s。阴极极化曲线测试结果表明在5 A/dm^2的条件下,镍钴铁三元合金电极的析氢过电位降低至121 mV,相比于纯镍电极过电位降低近50%,相比于镍钴电极过电位降低近35%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号