首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surficial sediments from southern Lake Huron, Lake St. Clair, and Lake Erie have been analyzed for a broad spectrum of chlorinated organics including PCBs, chlorobenzenes, and several pesticides. The differences between sediment contaminant concentrations in Lake Huron and Lake St. Clair indicated sources of hexachlorobenzene, hexachlorobutadiene, octachlorostyrene, and several other chlorinated benzenes along the St. Clair River. Similar differences between sediment PCB concentrations in Lakes Huron/St. Clair and Lake Erie indicated major PCB sources along the Detroit River. Specific PCB congener analysis revealed that PCBs discharged to the Detroit River contained especially high concentrations of highly chlorinated hexa-, hepta-, and octachloro-biphenyls which are major constituents of the industrial mixture Aroclor 1260. The analysis of individual PCB congeners made it possible to trace PCBs of Detroit River origin to the central and eastern basins of Lake Erie, and to estimate the contribution of the Detroit River to the PCB burden in sediments of these basins.  相似文献   

2.
Immigration and emigration of individuals among populations influence population dynamics and are important considerations for managing exploited populations. Lake Huron and Lake Erie walleye (Sander vitreus) populations are managed separately although the interconnecting Huron-Erie Corridor provides an unimpeded passageway. Acoustic telemetry was used to estimate inter-lake exchange and movement within St. Clair River and Detroit River. Of 492 adult walleyes tagged and released during 2011 and 2012, one fish from Tittabawassee River (Lake Huron; 1 of 259, 0.39%) and one individual from Maumee River (Lake Erie; 1 of 233, 0.43%) exchanged lakes during 2011–2014. However, both fish returned to the lake where tagged prior to the next spawning season. The one walleye from Maumee River that moved to Lake Huron made repeated round-trips between Lake Erie and Lake Huron during three consecutive years. Of twelve fish tagged in the Tittabawassee River detected in the Huron-Erie Corridor, few (n = 3) moved south of Lake St. Clair to the Detroit River. Ten walleye tagged in the Maumee River entered the Huron-Erie Corridor, and five were detected in the St. Clair River. Our hypothesis that walleye spawning in Maumee River, Lake Erie, served as a source population to Lake Huron (“sink population”) was not supported by our results. Emigration of walleye to Lake Huron from other populations than the Maumee River, such as those that spawn on in-lake reefs, or from Lake St. Clair may contribute to Lake Huron walleye populations.  相似文献   

3.
The sediments of Lake St. Clair were surveyed in 2001 for a range of compound classes including metals (such as total mercury and lead), polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans, organochlorine pesticides, polycyclic aromatic hydrocarbons, and short- and medium- chain chlorinated paraffins, in order to evaluate the spatial distribution and temporal trends of contamination. Concentrations of contaminants were generally low compared to the lower Great Lakes (Erie and Ontario), and were typically below the Canadian Sediment Quality Probable Effect Level (PEL) guidelines. The only exceptions were for mercury and DDE, where concentrations exceeded their respective PEL at one of the thirty-four sites sampled. With the exception of mercury, it was difficult to interpret spatial trends in contaminant concentrations due to these low levels, although relatively elevated concentrations of several contaminants were found in L’Anse Creuse Bay and at the outflow of the Thames River. In the case of mercury, historically-contaminated sediments in the St. Clair River associated with chlor-alkali production appeared to contribute to loadings to Lake St. Clair. There have been substantial reductions in sediment contamination in Lake St. Clair over the past three decades, as determined through sediment core profiles as well as through comparison of current data to those from historical surveys conducted in the early 1970s. These results indicate that management actions to reduce contaminant loadings to Lake St. Clair have been generally successful.  相似文献   

4.
The binational Great Lakes Water Quality Agreement (GLWQA) revised Lake Erie’s phosphorus (P) loading targets, including a 40% western and central basin total P (TP) load reduction from 2008 levels. Because the Detroit and Maumee River loads are roughly equal and contribute almost 90% of the TP load to the western basin and 54% to the whole lake, they have drawn significant policy attention. The Maumee is the primary driver of western basin harmful algal blooms, and the Detroit and Maumee rivers are key drivers of central basin hypoxia and overall western and central basin eutrophication. So, accurate estimates of those loads are particularly important. While daily measurements constrain Maumee load estimates, complex flows near the Detroit River mouth, along with varying Lake Erie water levels and corresponding back flows, make measurements there a questionable representation of loading conditions. Because of this, the Detroit River load is generally estimated by adding loads from Lake Huron to those from the watersheds of the St. Clair and Detroit rivers and Lake St. Clair. However, recent research showed the load from Lake Huron has been significantly underestimated. Herein, I compare different load estimates from Lake Huron and the Detroit River, justify revised higher loads from Lake Huron with a historical reconstruction, and discuss the implications for Lake Erie models and loading targets.  相似文献   

5.
Long-term (2001–2015) water quality monitoring data for the St. Clair River are presented with data from studies in the Detroit River in 2014 and 2015 to provide the most complete information available about nutrient concentrations and loadings in the Lake Huron–Lake Erie interconnecting corridor. Concentrations of total phosphorus (TP) in the St. Clair River have reflected declines in Lake Huron. We demonstrate that St. Clair River TP concentrations are higher than offshore Lake Huron values. The recent average (2014 and 2015) incoming TP load from the upstream Great Lakes is measured here to be 980 metric tonnes per annum (MTA), which is roughly three times greater than previous estimates. Significant TP load increases are also indicated along the St. Clair River. We treat the lower Detroit River as three channels to sample water quality as part of a two year monitoring campaign that included winter sampling and SRP in the parameter suite. We found concentrations of many parameters are higher near the shorelines, with the main Mid-River channel resembling water quality upstream measured at the mouth of the St. Clair River. Comparison with past estimates indicates both concentrations and loadings of TP have dramatically declined since 2007 in the Trenton Channel, while those in the Mid-River and in the Amherstburg Channel have remained similar or have possibly increased. The data demonstrate that the TP load exiting the mouth of the Detroit River into Lake Erie is currently in the range of 3740 (in 2014) to 2610 (2015) MTA.  相似文献   

6.
The Great Lakes Water Quality Agreement (GLWQA) established new Lake Erie phosphorus loading targets, including a 40% total phosphorus load reduction to its western and central basins. The Detroit and Maumee rivers’ loads are roughly equal and contribute about 90% of the load to the western basin and 54% to the whole lake. They are key drivers of central basin hypoxia and western basin algal production. So, accurate estimates of the Detroit River load are important. Direct measurement of that load near its mouth is difficult due to requiring real-time knowledge of flows around islands and the influence of Lake Erie’s seiches. Consequently, most estimates sum the loads to the St. Clair/Detroit River system. But this approach is complicated by uncertainties in the Lake Huron load and load retention in Lake St. Clair. Routine GLWQA reassessments will confirm or adjust over time the goals, loading targets, and approaches based on evolving information. So, there is a need to improve monitoring approaches that ensure accurate Detroit River loads. New approaches should take into account both the characteristics of this dynamic connecting channel and the uses of monitoring results: 1) determining the Detroit River loads to drive models, develop mass balances, set load reduction targets, and track progress; and 2) assessing the sources and processing of the loads to help guide reduction strategies. Herein, we review temporal and spatial variability in the St. Clair/Detroit River system, and suggest adjustments to monitoring that address those variabilities and both uses.  相似文献   

7.
The sediments of Lake Superior, Lake Huron, and Georgian Bay were sampled in 2001 and 2002 in order to evaluate the extent of surficial sediment contamination of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCs), polycyclic aromatic hydrocarbons (PAHs), and metals. Sediment concentrations of PCBs, OCs, PAHs, and mercury were generally low and up to 2 orders of magnitude less than in Lakes Erie and Ontario. In contrast, concentrations of metals such as arsenic, copper, and nickel were comparable to those in Lakes Erie and Ontario. These elevated Lakes Superior and Huron metal concentrations were attributed to naturally occurring metals within the bedrock, soil, and sediment of the study region. Concentrations of all contaminants were typically below the Canadian Sediment Quality Probable Effect Level (PEL) guidelines. With regard to spatial patterns, most contaminants were focused primarily in the depositional basins and atmospheric deposition was likely the major source of these chemicals to the lakes. The major exception was for metals (not including mercury) whose patterns were also influenced by natural sources as well as extensive mining activity. A comparison between surficial sediment contamination of samples collected as part of this survey and those collected in the late 1960s/early 1970s using similar methods showed that concentrations of DDT, PCB, lead, and mercury were generally similar between these two time periods. These results are not consistent with production and usage patterns that have declined substantially in the past 3 decades. We hypothesize that the lack of temporal trends is an artifact due to slow sediment accumulation rates as well as differences in analytical protocols between the two time periods.  相似文献   

8.
The gammarid amphipod Echinogammarus ischnus was found to be widespread from the south end of Lake Huron, downstream in the St. Clair River and across Lake Erie to the Niagara River outlet into Lake Ontario. The presence of this exotic species was first reported in the Detroit River, where it now dominates; this species has been common in western Lake Erie since the summer of 1995. The species has replaced the native amphipod Gammarus fasciatus on rocky habitats in the St. Clair, Detroit, and Niagara rivers, and is the dominant amphipod on rocky shores in western Lake Erie. In one year, E. ischnus became the dominant amphipod at the Lake Ontario end of the Welland Canal, although the fecundity of E. ischnus is less than G. fasciatus. E. ischnus has not yet been reported from the north shore of Lake Ontario or the outlet into the St. Lawrence River but occurs 100 km further downstream at Prescott.  相似文献   

9.
Young-of-the-year spottail shiners (Notropis hudsonius) were used as biomonitors to determine the spatial distribution (1982/83) and assess trend data for organochlorine and mercury residues. Significantly (p < 0.01) higher PCB residues were found in Detroit River spottail shiners than in collections from southwestern Lake St. Clair and northwestern Lake Erie. The highest PCB residues were found in the west bank collections from Michigan waters (912–2,997ng/g) compared to the mid-stream (96–290 ng/g) and east bank collections (153–316 ng/g). Chlordane residues were found to be elevated in all spottail shiner samples from urbanized areas. Octachlorostyrene and ∑ DDT residues were distributed uniformly within the study area, whereas mercury concentrations were found to be lower in spottail shiners from northwestern Lake Erie than in comparable samples from the Detroit River and southwestern Lake St. Clair. Residues for BHC, heptachlor, aldrin, and chlorinated benzenes were near their detection limits; mirex and chlorinated phenols were not detectable. Recent (1982/83) PCB residue levels in spottail shiners exceeded the IJC aquatic life objective (Great Lakes Water Quality Agreement of 1978) at all the sites sampled, except at Pike Creek in Lake St. Clair. PCB residues in spottail shiners from Pike Creek, Big Creek, and Leamington have declined significantly (p < 0.01) since the mid-seventies. Mercury and chlordane residues have decreased in spottail shiner samples from Leamington, but have remained virtually unchanged at Big Creek and Pike Creek.  相似文献   

10.
Environmental occurrence of alkyllead compounds, both of molecular species, e.g., tetraalkyllead, and ionic species, e.g., dialkyllead and trialkyllead, is believed to be derived mainly from anthropogenic sources such as effluents of alkyllead production plants and from slow degradation of tetraalkyllead in the environment. The present study describes a survey for the occurrence of tetraalkyllead, trialkyllead, dialkyllead, and Pb(II) (R = Me, Et) in water, surface microlayer, fish, and sediments from 29 stations in the St. Clair and Detroit rivers, including the western basin of Lake Erie. Results indicated that triethyllead and diethlylead compounds have been found for the first time in fish and surface microlayer in St. Clair River near Corunna where a production plant is located. About 48% of the surface microlayer samples contained various alkyllead compounds whereas only one water sample taken from the St. Clair River was found to contain alkyllead. Alkyllead compounds were found in several species of fish caught in the St. Clair River, with northern pike containing the highest concentration of alkyllead (0.173 μg/g) followed by white sucker, carp, and walleye. The concentrations of alkyllead in some individual fish reached the p.p.m. level which is considered highly hazardous for consumption although health criteria for alkyllead are not yet available. The ratios of alkyllead to total lead ranged from 0% for yellow perch and brown trout to 56% for carp.  相似文献   

11.
To support the 2012 Great Lakes Water Quality Agreement on reducing Lake Erie's phosphorus inputs, we integrated US and Canadian data to update and extend total phosphorus (TP) loads into and out of the St. Clair-Detroit River System for 1998–2016. The most significant changes were decreased loads from Lake Huron caused by mussel-induced oligotrophication of the lake, and decreased loads from upgraded Great Lakes Water Authority sewage treatment facilities in Detroit. By comparing Lake St. Clair inputs and outputs, we demonstrated that on average the lake retains 20% of its TP inputs. We also identified for the first time that loads from resuspended Lake Huron sediment were likely not always detected in US and Canadian monitoring programs due to mismatches in sampling and resuspension event frequencies, substantially underestimating the load. This additional load increased over time due to climate-induced decreases in Lake Huron ice cover and increases in winter storm frequencies. Given this more complete load inventory, we estimated that to reach a 40% reduction in the Detroit River TP load to Lake Erie, accounting for the missed load, point and non-point sources other than that coming from Lake Huron and the atmosphere would have to be reduced by at least 50%. We also discuss the implications of discontinuous monitoring efforts.  相似文献   

12.
A Great Lakes hydrologic response model was used to study the temporal effects of St. Clair River dredging on Lakes St. Clair and Erie water levels and connecting channel flows. The dredging has had a significant effect on Great Lakes water levels since the mid-1980s. Uncompensated dredging permanently lowers the water levels of Lakes Michigan and Huron and causes a transitory rise in the water levels of Lakes St. Clair and Erie. Two hypothetical dredging projects, each equivalent to a 10 cm lowering of Lakes Michigan and Huron, were investigated. This lowering is approximately half the effect of the 7.6 and 8.2 meter dredging projects. In the first case the dredging was assumed to occur over a single year while in the second it was spread over a 2-year period. The dredging resulted in a maximum rise of 6 cm in the downstream levels of Lakes St. Clair and Erie. The corresponding increase in connecting channel flows was about 150 m3s?1. The effects were found to decrease over a 10-year period with a half-life of approximately 3 years. The maximum effects on Lake Erie lagged Lake St. Clair by about 1 year.  相似文献   

13.
A comparison of the results from macrozoobenthic surveys of the Detroit River (1968 and 1980) showed spatial and temporal differences in the types and distribution of organisms recovered. Similar comparisons were also made from studies of the St. Clair River (1968 and 1977) and the western basin of Lake Erie (1967 and 1979). Results are also presented from a 1983 study of Lake St. Clair. These studies indicate a general improvement in the macrozoobenthos of the area, exhibited by a stronger representation of pollution sensitive organisms and an improved community structure. The studies demonstrate both the sensitivity of these large rivers and lakes and their recuperative capabilities following pollution abatement measures. Despite the documented improvements, large areas of impairment still exist, particularly in the St. Clair and Detroit rivers.  相似文献   

14.
The connecting channels linking the Laurentian Great Lakes provide important migration routes, spawning grounds, and nursery habitat for fish, but their role as conduits between lakes for zooplankton is less understood. To address this knowledge gap in the St. Clair–Detroit River System (SCDRS), a comprehensive survey of crustacean zooplankton was performed in both riverine and lacustrine habitats from spring to fall 2014, providing the first system-wide assessment of zooplankton in the SCDRS. Zooplankton density and biomass were greatest in northern reaches of the system (southern Lake Huron and the St. Clair River) and decreased downstream towards Lake Erie. The composition of zooplankton also changed moving downstream, transitioning from a community dominated by calanoid copepods, to more cyclopoids and cladocerans in the Detroit River, and to cladocerans dominant in western Lake Erie. Coincidentally, species richness increased as sampling progressed downstream, and we estimated that our single-year sampling regime identified ~88% of potential taxa. Other species assemblages have responded positively to recent water quality and habitat restoration efforts in the SCDRS, and this survey of the zooplankton community provides benchmark information necessary to assess its response to continued recovery. In addition, information regarding the lower trophic levels of the system is integral to understanding recruitment of ecologically and economically valuable fish species targeted for recovery in the SCDRS.  相似文献   

15.
Infrequent captures of invasive, non-native grass carp (Ctenopharyngodon idella) have occurred in Lake Erie over the last 30+ years, with recent evidence suggesting wild reproduction in the lake’s western basin (WB) is occurring. Information on grass carp movements in the Laurentian Great Lakes is lacking, but an improved understanding of large-scale movements and potential areas of aggregation will help inform control strategies and risk assessment if grass carp spread to other parts of Lake Erie and other Great Lakes. Twenty-three grass carp captured in Lake Erie’s WB were implanted with acoustic transmitters and released. Movements were monitored with acoustic receivers deployed throughout Lake Erie and elsewhere in the Great Lakes. Grass carp dispersed up to 236 km, with approximately 25% of fish dispersing greater than 100 km from their release location. Mean daily movements ranged from <0.01 to 2.49 km/day, with the highest daily averages occurring in the spring and summer. The Sandusky, Detroit, and Maumee Rivers, and Plum Creek were the most heavily used WB tributaries. Seventeen percent of grass carp moved into Lake Erie’s central or eastern basins, although all fish eventually returned to the WB. One fish emigrated from Lake Erie through the Huron-Erie Corridor and into Lake Huron. Based on our results, past assessments may have underestimated the potential for grass carp to spread in the Great Lakes. We recommend focusing grass carp control efforts on Sandusky River and Plum Creek given their high use by tagged fish, and secondarily on Maumee and Detroit Rivers.  相似文献   

16.
Soft sediments from the Detroit River were analyzed for the USEPA priority pollutants to generally characterize contaminant distribution. Forty-three were detected. Highest heavy metal concentrations were found in the Trenton Channel and immediately downstream of Grosse Ile. They ranged from an area mean (N = 2) of 0.19 mg/kg mercury to 338.7 mg/kg zinc (dry weight). Polynuclear aromatic hydrocarbons ranged from 0.1 mg/kg to 38.8 mg/kg (mean, N = 2) with the highest levels near Grosse Ile. PCBs ranged from 0.015 mg/kg to 1.7 mg/kg (mean, N = 2). Organochlorine pesticides were not detected except for a trace of heptachlor in one sample. Sediment contamination in the Detroit River is widespread with higher concentrations on the U.S. side downstream of the Rouge River and in the Trenton Channel. The significance of these in-place pollutants to biota and as a source to Lake Erie is still unknown.  相似文献   

17.
Sediment cores were collected from 36 stations in Lake St. Clair during 1985 by divers. Usually within hours of collection, replicate cores were extruded and sectioned into 1-to 2-cm intervals. One replicate was stored by Canada Centre for Inland Waters personnel for organic contaminant, mercury, and major element analyses. The other replicate was stored by Great Lakes Research Division and Great Lakes Environmental Research Laboratory personnel for Cs-137, Pb-210, grain size, total carbon, and trace metal analyses. In order to estimate the mass of trace metals stored in the lake sediments, equal mass sections of each core were composited. These and individual sections of each core were analyzed and the total mass and anthropogenic mass of each metal in culturally impacted sediments were calculated. Estimated total and anthropogenic masses (metric tons) are: bismuth, 27 and 13; cadmium, 690 and 440; chromium, 5,100 and 1,800; copper, 3,000 and 1,500; nickel, 4,000 and 1,300; lead, 3,200 and 1,500; antimony, 25 and 13; and zinc, 11,000 and 3,300.  相似文献   

18.
The objectives of the investigation were to provide information on the concentration and distribution of metals in bottom sediments of the Detroit River and to study the association of metals with various sediment components. Concentrations of major elements (Si, Al, Ca, Mg, Na, K, Fe, Mn, and P) and metals (Co, Cr, Cu, Ni, Pb, and Zn), particle size distribution, and mineralogical composition were determined in 20 surficial sediment samples collected along the Detroit River in 1983. Significantly higher concentrations of metals in the Detroit River sediments than those reported in Lake St. Clair and Lake Erie sediments indicated input from sources in the river's drainage basin. Poor relationships exist between the metals and organic C and the metals and the silt-clay size fraction (< 63 μm). The association of metals with sediment particles was investigated by a separation of sediment into seven size fractions ranging from < 13 to > 63 μm. Zn, Ni, Cr, and Pb were accumulated in the < 13 μm size fraction. However, Cu and Cr concentrations were highest in the < 13 and 48 to 63 μm fractions. Quartz, feldspars, and calcite were found in the > 63 μm fraction. Dolomite, feldspars, and quartz were in the 13 to 63 μm fraction and the clay minerals illite, chlorite, and kaolinite were in the < 13 μm fraction. Concentrations and relationships among major elements reflected the mineralogical composition of different particle size fractions.  相似文献   

19.
The temporal and spatial relationships of a suite of organochlorine contaminants and mercury were examined in various fish species of the St. Clair River/Lake St. Clair corridor, Canada, in order to evaluate the effectiveness of remediation efforts and to assess the risk to human and wildlife fish consumers. In Lake St. Clair, fish tissue concentrations of mercury, polychlorinated biphenyls (PCBs), octachlorostyrene (OCS), hexachlorobenzene (HCB), and dichlorodiphenyltrichloroethane (DDT) decreased consistently from the 1970s until the 1980s and 1990s, after which the rate of contaminant decline slowed or concentrations stabilized. This trend was consistent in up to 13 species (both young-of-the-year and adult fishes) comprising different trophic positions and dietary habits, suggesting that the changes were reflective of ambient conditions rather than food web processes. Elevated concentrations of mercury, PCBs, OCS, HCB, and DDT were detected in St. Clair River young-of-the-year spottail shiner compared with fish from Lake Huron, indicating that non-atmospheric inputs of these chemicals, likely originating from sediment, remain in the St. Clair River. Current concentrations of mercury and PCBs, and mercury, PCBs, and DDT remain of concern to human and wildlife fish consumers, respectively. Given that contaminant decreases have generally stabilized in fish, we suggest that further natural recovery of contaminants in St. Clair corridor fishes will be slow since contaminants will likely continue to be influenced by sediment levels.  相似文献   

20.
The St. Clair-Detroit River System watershed is a large, binational watershed draining into the connecting channel between lakes Huron and Erie. In addition to extensive agricultural lands, it contains large urban areas that discharge phosphorus from point source facilities, runoff of impervious surfaces, and overflows of combined sewers. To help guide actions to reduce phosphorus input to Lake Erie, we analyzed the spatial and temporal dynamics of loads from the three largest urban areas in the watershed (southeast Michigan; Windsor, Ontario; and London, Ontario), and used a previously calibrated storm water management model (SWMM) to explore options for reducing loads around metro Detroit. Point sources in these three urban areas contribute, on average, 81% of the total urban load and 19% of the Detroit River’s total phosphorus (TP) load to Lake Erie, while combined sewer overflows and runoff both contribute about 10% each to the urban load and about 2.5% each to the Detroit River’s load to Lake Erie. Most of the urban load (56%) comes from a single point source, the wastewater treatment facility in Detroit; however, TP loads from that facility have decreased by about 51% since 2008 due to improvements in wastewater treatment. Model simulations suggest that increasing pervious land area or implementing green infrastructure could help reduce combined sewer overflows in certain upper portions of the metro Detroit sewer system, but reductions were much less expressed for wet-weather discharge from the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号