首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influence of length and volumetric percentage of steel fibres on energy absorption of concrete slabs with various concrete strengths is investigated by testing 28 small steel fibre reinforced concrete (SFRC) slabs under flexure. Variables included; fibre length, volumetric percentage of fibres and concrete strength. Test results indicate that generally longer fibres and higher fibre content provide higher energy absorption. The results are compared with a theoretical prediction based on random distribution of fibres. The theoretical method resulted in higher energy absorption than that obtained in experiment. A design method according to allowable deflection is proposed for SFRC slabs within the range of fibre volumetric percentages used in the study. The method predicts resisting moment–deflection curve satisfactorily.  相似文献   

2.
A large experimental research programme has investigated the flexural strength of simply supported reinforced concrete beams. The beams were first damaged so that they could be strengthened by means of jackets (cast-in-place shotcrete or pre-packed special mortar plus additional new reinforcement). This paper analyses the flexural strength of these beams. The behaviour in service and ultimate state as well as the bond characteristics are studied.
Résumé Au cours d'un vaste programme expérimental, on a étudié la résistance en flexion de poutres en béton armé à appui simple. Ces poutres ont d'abord été endommagées, pour ensuite être renforcées par du béton projeté ou par du mortier spécial préconditionné, avec l'adjonction de nouvelles armatures. Cet article discute de la résistance en flexion de ces poutres. Le comportement en service et à l'état limite ultime, ainsi que les caractéristiques d'adhérence, sont étudiés.
  相似文献   

3.
The ultimate strength of reinforced concrete T-beams reinforced with conventional steel bars and short discontinuous steel fibers are studied. It is found that the presence of steel fibers reduced effectively the deflection, width of cracks and also improved the ductility and flexural rigidity of the concrete beams. Hence, an appreciable increase to the ultimate compressive strain is observed as well as the increase in the ultimate compressive strength. These are reflected by an increase in the value of the compressive block parameters. In addition, an increase in tensile strength is achieved and a rectangular tensile stress distribution is proposed. It was found that a negligible difference in moment capacity between overreinforced and underreinforced concrete beams. Therefore, it may be economical to use more amount of tension reinforcement than that allowed by the codes. Theoretical equations are developed to calculate the ultimate strength of reinforced concrete T-beams taking into account the effect of amount of compression reinforcement and amount of steel fibers. Theoretical equations show good agreement when compared with experimental results.  相似文献   

4.
Small-scale slab tests at ambient and elevated temperatures, conducted on horizontally unrestrained simply supported slabs, are presented in this paper. The aim of this research is to investigate the structural behaviour of concrete produced from different percentages of glass sand (20, 40, and 60 % by weight) and reinforced with different volume fractions of basalt fibre (0, 0.1, 0.3, and 0.5 % by total mix volume), when subjected to large vertical displacement. The results were also compared against similar structural members with concrete that did not contain glass or fibres. The results showed that the fracture of the reinforcement was the mode of failure for all the slabs and the load carrying capacity was enhanced above the theoretical yield-line load. For the slabs tested at elevated temperatures, the enhancement due to membrane action was at least twice as high as that recorded in the ambient temperature tests. The slabs with higher glass sand and basalt fibre content also exhibited greater enhancement and failed at higher displacement. The results also showed that the enhancement in the concrete with glass aggregate and basalt fibre was greater than that in concrete that contained no glass or fibre by up to 26 and 31 % at ambient temperature and in fire respectively.  相似文献   

5.
GFRP bars are often used for the internal reinforcement of concrete bridge deck slabs as an alternative to traditional steel reinforcements with excellent results in terms of corrosion resistance. Several experiments on bridge decks were conducted to evaluate their structural behaviour but their fatigue performance still needs an adequate experimental investigation. This paper presents the results of an experimental campaign on four full scale concrete bridge deck specimens reinforced with GFRP bars that were designed, constructed and tested to resist cyclic moving loads. Two hydraulic jacks were used to simulate moving concentrated loads. After the cycles, the load was increased to the static failure. The slabs reinforced with GFRP bars showed a better fatigue performance compared to the requests of the European codes.  相似文献   

6.
Even though a number of research studies have demonstrated the effectiveness of Fibre Reinforced Concrete (FRC) in improving the structural response of RC members under different loading conditions, some concerns recently arose on the sectional ductility under flexure which can be reduced under specific conditions. In fact, fibres do not significantly increase the ultimate moment of RC members and, with rather tough FRC and low strain-hardening ratio of the longitudinal rebars, the rotation capacity can substantially decrease owing to a cracking localization at ultimate limit state.This paper focuses on this topic with a number of experimental results on full-scale FRC beams tested under flexure.Experimental results evidence that fibres, when provided in sufficient amount, are able to move the beam failure from concrete crushing to steel rupture. Under certain circumstances, the overall ductility, measured in terms of displacements, may decrease.On the other hand, in all cases the addition of fibres determines a stiffer and in general enhanced post-cracking behaviour in service conditions.  相似文献   

7.
《Composites Part B》2013,44(8):2930-2937
Even though a number of research studies have demonstrated the effectiveness of Fibre Reinforced Concrete (FRC) in improving the structural response of RC members under different loading conditions, some concerns recently arose on the sectional ductility under flexure which can be reduced under specific conditions. In fact, fibres do not significantly increase the ultimate moment of RC members and, with rather tough FRC and low strain-hardening ratio of the longitudinal rebars, the rotation capacity can substantially decrease owing to a cracking localization at ultimate limit state.This paper focuses on this topic with a number of experimental results on full-scale FRC beams tested under flexure.Experimental results evidence that fibres, when provided in sufficient amount, are able to move the beam failure from concrete crushing to steel rupture. Under certain circumstances, the overall ductility, measured in terms of displacements, may decrease.On the other hand, in all cases the addition of fibres determines a stiffer and in general enhanced post-cracking behaviour in service conditions.  相似文献   

8.
The results of an experimental investigation on the fatigue characteristics and residual strength of steel fiber reinforced concrete (SFRC) are reported. The testing program included flexural specimens as well as split-cylinders and cubes reinforced with two fiber types at a low volume content. One of the fibers was of the deformed slit-sheet type available at aspect ratios of 45 and 60. It is shown that SFRC has a better fatigue response than plain concrete and that the deformed slit-sheet fiber has an effect almost identical to hooked-end fiber of similar dimensions. There is no increase in residual strength measured by split-tension when specimens are subjected to fatigue stress above the endurance limit. Fatigue characteristics of SFRC from this testing program as well as previous works can be interpreted as a function of the fiber factor (i.e. a parameter accounting for volume fraction, aspect ratio and fiber type) to provide design charts. More experimental work is needed to provide an acceptable database for fatigue design of SFRC.  相似文献   

9.
Recently, RILEM TC 162-TDF has proposed equivalent,f eq , and residual,f R , flexural tensile strength parameters to characterize and simulate the post-cracking behaviour of steel fibre reinforced concrete (SFRC) structures. In the current work, more than two hundred flexural tests are carried out according to the RILEM TC 162-TDF recommendations and the corresponding values off eq andf R parameters are evaluated. In series of specimens reinforced with fibres of a distinct length/diameter ratio, similar values off eq andf R parameters were obtained in these series. Although a strong correlation betweenf eq andf R was determined, a larger scatter off R values was observed thereby revealingf eq to be more appropriate for design purposes. A numerical strategy involving a cross sectional layered model and an inverse analysis was developed to evaluate the post-cracking stress-strain and the stress-crack opening diagrams for the tested SFRC. This strategy was also used to determine a relation between the post-cracking strain, ɛ pcr , and the crack opening displacement,w, (ɛ pcr =w/L p ) which is useful for evaluating the crack opening when numerical strategies based on a stress-strain approach are used. The obtainedL p values range from half the specimen cross section height to half the distance between the tip of the notch and the top of the cross section.
Résumé Récemment, pour caractériser et simuler le comportement post-fissuration en traction du béton renforcé des fibres d'acier, la Commission Technique 162-TDF de la RILEM a proposé des paramètres désignés par résistance équivalente, feq, et résistance résiduelle, fR, à la contrainte en flexion. Dans le travail présent, des valeurs de ces paramètres sont obtenues sur plus de deux cents essais de flexion effectués en accord avec les recommandations du TC 162-TDF de la RILEM. Des valeurs semblables de feq et fR ont été obtenues dans des séries d'éprouvettes renforcées avec des fibres d'un rapport longueur/diamètre distinct. Bien qu'une forte corrélation entre feq et fR ait été déterminée, une plus grande dispersion de valeurs du fR a été observée, en démontrant que feq est plus approprié pour les buts du projet. Pour évaluer les diagrammes contrainte-déformation et contrainte-ouverture après fissuration, une stratégie numérique a été développée, en utilisant un modèle de section et en effectuant une analyse inverse. Cette stratégie a aussi été utilisée pour déterminer une relation entre la contrainte après fissuration, ɛ pcr , et l'ouverture de fissure, w, (ɛ pcr =w/L p ) utile pour évaluer l'ouverture de la fissure quand les stratégies numériques sont basées sur une approche contrainte-déformation. Les valeurs de Lp obtenues ont varié entre la demi-hauteur de la section de l'éprouvette et la demi-distance entre l'extrémité de l'entaille et le sommet de la section.
  相似文献   

10.
The possibility of substituting traditional transverse reinforcement (stirrups) for steel fibres in precast elements can significantly reduce production costs. In the present paper, the shear behaviour of prestressed elements has been investigated by means of experimental tests on full scale beams. Tests concern beams with conventional as well as steel fibre reinforcement. Experimental results show that the shear behaviour of fibre reinforced concrete beams without conventional reinforcement is similar to, or even better than that of beams with stirrups. When used in beams with stirrups, steel fibres significantly improve their shear strength. A discussion on the contribution of steel fibres on the shear strength is also presented, with reference to the latest RILEM provisions.
Résumé La possibilité de remplacer des armatures transversales traditionnelles par des fibres d'acier dans des éléments pré-tendus peut apporter des améliorations considérables sur les performances structurales. Dans ce rapport, le comportement en cisaillement des éléments précontraints a été étudié à l'aide de tests expérimentaux sur des poutres à échelle grandeur nature. Les essais portent aussi bien sur des poutres avec armatures traditionnelles que sur des poutres renforcées à l'aide de fibres. Les résultats expérimentaux montrent que les performances des poutres en béton de fibres sans armatures traditionnelles sont similaires, sinon meilleures, à celles des poutres avec armature ordinaire de cisaillement. Lorsqu'elles sont utilisées dans des poutres avec armatures traditionnelles les fibres d'acier améliorent considérablement leur résistance en cisaillement.
  相似文献   

11.
This paper provides test data on seismic behaviour of SFRC piles. Four large-scale specimens are subjected to a combination of constant axial load and alternating cyclic flexure. A similar number of specimens are subjected to alternating cyclic flexure without axial load. Twin-cone fibres and new twin-crimped fibres in weight fraction between 40 kg/m3 and 50 kg/m3 are used.  相似文献   

12.
In the present paper an analytical and experimental investigation referring to the flexural behaviour of reinforced concrete corbels subjected to vertical forces is presented. For fixed shape and dimensions of the corbels the experimental investigation analyses the effects of the following: longitudinal and transverase steel reinforcements; fiber reinforced concrete (FRC) with hooked steel fibers; external wrapping retrofitting technique with a thin layer of carbon fiber sheet (CFRP). The analytical model based on equivalent truss structures, allows one to determine the bearing capacity of corbels, distinguishing the different ultimate states reached. The analytical results are then compared with experimental values, showing good agreement.  相似文献   

13.
14.
This paper presents the results of a study of steel-fiber-reinforced concrete (SFRC) in flexural fatigue. An experimental technique was developed to determine the moment at which cracking is initiated, thus allowing a quantification of the survival life beyond cracking. Basically, the experimental program consisted of 8 series of flexural fatigue tests (under third-point loading) performed at three different levels of stress (70%, 75% and 85% of first-crack strength). Six SFRC mixtures (at a fiber dosage of 40 kg/m3) were prepared and tested. The variables were the water/cement ratio (0.45 and 0.35), and the fiber geometry (hooked, anchored, and crimped fibers). Two similar plain concretes (w/c=0.45 and 0.35) were used as reference mixtures. The fatigue response of the SFRC mixtures was found to be quite variable, both before and after cracking. The survival life appeared to be significant, especially at the lower level of stress investigated, but the overall variability prevented the identification of specific trends concerning the influence of the water/cement ratio and the type of fibers. The variability of the number of fibers found in the bottom half of the specimens at the critical section could not explain the variability of the survival life. It was concluded that the orientation of the fibers also had an influence in this respect, and that a fiber content higher than that utilized, or the use of larger test specimens, was probably required to limit this variability.  相似文献   

15.
In this paper, results are reported for a series of discrete end hooked and straight fibre pullout tests subjected to mixed mode action with the results compared to that of discrete fibres pulled out in Mode I (tensile) and Mode II (shear) fracture. As has been previously observed from Modes I and II fracture tests, the snubbing effect dominates the behaviour of fibres at large fibre bending angles. At large fibre bending angles, considerable slip and crack separation occurred prior to the fibres being engaged in taking load and fibres that are inclined close to the cracked surface are ineffective in carrying load. The results of the test were compared with the fibre engagement and bond stress models in the Unified Variable Engagement Model (UVEM). A good correlation is observed for the UVEM model with the test data and provides further confirmation of the validity of the UVEM model to predict the mix mode fracture of steel fibre reinforced concrete.  相似文献   

16.
The flexural response of FRP RC elements is investigated through load–deflection tests on 24 RC beams and slabs with glass FRP (GFRP) and carbon FRP (CFRP) reinforcement covering a wide range of reinforcement ratios. Rebar and concrete strains around a crack inducer are used to establish moment–curvature relationships and evaluate the shear and flexural components of mid-span deflections. It is concluded that the contribution of shear and bond induced deformations can be of major significance in FRP RC elements having moderate to high reinforcement ratios. Existing equations to calculate short-term deflection of FRP RC elements are discussed and compared to experimental values.  相似文献   

17.
Although several research studies have been conducted on simply supported concrete elements reinforced with fibre reinforced polymer (FRP) bars, there is little reported work on the behaviour of continuous elements. This paper reports the testing of four continuously supported concrete slabs reinforced with carbon fibre reinforced polymer (CFRP) bars. Different arrangements of CFRP reinforcement at mid-span and over the middle support were considered. Two simply supported concrete slabs reinforced with under and over CFRP reinforcement and a continuous concrete slab reinforced with steel bars were also tested for comparison purposes. All continuous CFRP reinforced concrete slabs exhibited a combined shear–flexure failure mode. It was also shown that increasing the bottom mid-span CFRP reinforcement of continuous slabs is more effective than the top over middle support CFRP reinforcement in improving the load capacity and reducing mid-span deflections. The ACI 440.1R–06 formulas overestimated the experimental moment at failure but better predicted the load capacity of continuous CFRP reinforced concrete slabs tested. The ACI 440.1R–06, ISIS–M03–07 and CSA S806-06 design code equations reasonably predicted the deflections of the CFRP continuously supported slabs having under reinforcement at the bottom layer but underestimated deflections of continuous slabs with over-reinforcement at the bottom layer.  相似文献   

18.
The paper reports on the analysis of shear strength of reinforced slabs made of autoclaved aerated concrete without shear reinforcement. The test data are taken from eleven different investigations from six countries, in Europe and Japan, over a period of some twenty years and include 271 tests. The analysis of the test data results in regression expressions, suitably modified from a formula used for ordinary concrete members, and shows good agreement with test values. Appropriate expressions are suggested for design.  相似文献   

19.
The effects of long-term loading on plain (PLC) and steel fibre reinforced concrete (SFRC) rings under two-edge sustained load at five different levels were investigated. The results have led to the conclusion that a linear relationship between the initial and time-dependent deformations can be supposed. The intercept term of the regression straight line was found to be equal to the deformation caused by pure shrinkage. In spite of cracks appearing at higher loading levels the linearity was not distorted. The results indicate that an exponential function including one retardation time can be applied in practical computation of long-term deformations.
Resume On a étudie le comportement d’anneaux de béton non armé (PLC) et de béton renforcé de fibres d’acier (SFRC) chargés au bord dans deux directions différentes sous cinq charges différentes. Les résultats laissent supposer qu’il peut exister une relation entre les déformations initiales et celles qui se développent avec le temps. On a trouvé que l’intercept de la ligne droite de régression était égal à la déformation déterminée par le seul retrait. En dépit des fissures qui apparaissent à des niveaux de charges plus élevés, on n’a pas observé de distortion de la linéarité. Les résultats montrent qu’on peut appliquer une fonction exponentielle comprenant un temps de retard au calcul pratique des déformations à long terme.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号