首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been demonstrated that prenatal protein malnutrition significantly affects hippocampal plasticity, as measured by long-term potentiation, throughout development. This paper focuses on the hippocampal dentate granule cell population response to two separate paradigms of tetanization of the medial perforant pathway in prenatally protein-malnourished and normally nourished adult male rats. The 100-pulse paradigm consisted of the application of ten 25-ms-duration bursts of 400 Hz stimulation with an interburst interval of 10 s. The 1000-pulse paradigm consisted of the application of five 500-ms bursts of 400 Hz stimulation with an interburst interval of 5 s. No between-group differences were obtained for input/output response measures prior to tetanization. No between-group, nor between-paradigm, differences were obtained in the degree of population EPSP slope enhancement. However, in response to both paradigms, prenatally malnourished animals showed significantly less enhancement of the population spike amplitude (PSA) measure than normally nourished animals. Normally nourished animals showed a significantly greater level of PSA enhancement in response to the 100-pulse paradigm than the 1000-pulse paradigm. Prenatally malnourished animals showed no significant differences in the degree of PSA enhancement between the two paradigms. Results indicate that short duration bursts (< or = 25 ms) are more effective in inducing maximal PSA enhancement in normally nourished rats than longer duration stimulus bursts. The apparent inability of prenatally malnourished rats to transfer enhanced cellular activation (population EPSP slope enhancement) into enhanced cellular discharge (PSA enhancement) suggests that a preferential enhancement of GABAergic inhibitory modulation of granule cell excitability may result from the prenatal dietary insult. Such potentiation of inhibitory activity would significantly lower the probability of granule cell population discharge, resulting in the significantly lower level of PSA enhancement obtained from these animals.  相似文献   

2.
Extracellular levels of dopamine (DA) were measured in the central part (the central and intercalated nuclei) of the amygdala (AMY) using microdialysis at 20 min intervals before, during and after 1 h of feeding in 12 h food-deprived rats. The results were compared with the effects of peripheral injections of glucose or a low dose (200 mU) of insulin in non-deprived animals. Feeding caused a 130% increase in extracellular DA. Glucose resulted in an increase in DA levels (+86%). In contrast, insulin caused a decrease of DA (-50%) and metabolites. The results show that natural feeding is associated with an increase in DA turnover in the amygdala, and that peripheral glucose and insulin can affect DA metabolism in the amygdala presumably in response to changes in glucose utilization.  相似文献   

3.
Our earlier studies suggest dopamine and serotonin interact with acetylcholine (ACh) in the nucleus accumbens (NAC) as part of a system for motivation and reinforcement. The purpose of the present experiment was to characterize a possible link between GABA and acetylcholine in the nucleus accumbens using microdialysis in freely moving rats. Different doses of GABA, muscimol, baclofen, saclofen and bicuculline were locally infused into the nucleus accumbens through the microdialysis probe. GABA and its agonists dose-dependently decreased extracellular levels of acetylcholine in the nucleus accumbens. In contrast the GABAA antagonist, bicuculline, dose-dependently increased extracellular ACh while the GABAB antagonist, saclofen, was without effect. Co-infusion of bicuculline or saclofen was shown to block the decrease in recoverable ACh produced by muscimol or baclofen, respectively. The results demonstrate an inhibitory action of GABA on acetylcholine interneurones in the nucleus accumbens involving both GABAA and GABAB receptor subtypes. In addition a tonic inhibitory GABAergic tone is probably mediated through GABAA receptors.  相似文献   

4.
Healthy hair samples from golden hamsters were examined for the presence of dermatophytes and non-dermatophytes using baiting technique and direct inoculation. Thirty-four species and 2 varieties attributed to 17 genera were recovered. Paecilomyces variotii (isolated from 84.4% of the examined hair) and Aspergillus niger (81.3%) were the more frequent isolates on Sabouraud's dextrose agar (SDA) without cycloheximide. Our results have clearly demonstrated that the hair of hamster was free from true dermatophytes. Using the dilution plate method many fungal species were isolated from cage material (7 genera and 10 species + 1 variety); from faeces (10 genera and 17 species); from standard chow (3 genera and 6 species) of hamster. P. variotii which was the most frequent fungus in the preceding 3 substrates was completely absent in the presence of cycloheximide in SDA. The present study has demonstrated for the first time the isolation of Trichophyton rubrum from hamster faeces. Also, several saprophytic and cycloheximide resistant fungi were isolated. In the air of hamster cage Cladosporium cladosporioides, Penicillium chrysogenum, Alternaria alternata and Scopulariopsis brevicaulis were the most dominant species on SDA with or without cycloheximide. Using the agar diffusion method, Aloe sap, onion oil, garlic bulb extract and aqueous leaf extracts of Andropogon citratus, Euphorbia sp. and Ruta graveolens were tested for their antifungal activity on 10 fungal species. It was observed that onion oil exhibited a high inhibitory effect against most of the tested fungi.  相似文献   

5.
Previous studies have identified neurons in the hippocampus, subiculum, and entorhinal cortex which discharge as a function of the animal's location in the environment. In contrast, neurons in the postsubiculum and anterior thalamic nucleus discharge as a function of the animal's head direction in the horizontal plane, independent of its behavior and location in the environment. Because the parasubiculum (PaS) has extensive connections, either directly or indirectly, with these structures, it is centrally located to influence the neuronal activity in these areas. This study was therefore designed to determine the types of behavioral and spatial correlates in neurons from the PaS. Single unit recordings were conducted in the PaS of freely moving rats trained to retrieve food pellets thrown randomly into a cylindrical apparatus. A total of 10.3% of the cells were classified as place cells because they discharged in relation to the animal's location in the cylinder. A large percentage of cells (41.4%) were classified as theta cells. The remaining cells had nondiscernable behavioral correlates. Quantitative analysis of the firing rate maps for the place cells showed they had higher levels of background activity and contained larger firing fields than values reported previously for hippocampal place cells. Directional analysis showed that only three out of 16 cells contained a secondary directional correlate; the firing rate for the remaining cells was not affected by the animal's directional heading within the firing field. A time shift analysis, which shifted the spike time series relative to the animal location series, was conducted to determine whether the quality of the location-specific firing could be improved. The time shifts for three different spatial parameters were optimal when cell discharge led the animal's position. Furthermore, the optimal time shifts for two of these parameters (firing area and information content) were less than the optimal shift reported for hippocampal place cells and suggested that PaS cell discharge lagged behind hippocampal place cell activity. Rotation of the cue card with the animal out of view led to near equal rotation of the firing field when the animal was returned to the apparatus. These results indicate that a small population of cells in the PaS encode the animal's location in its environment, although the representation of space encoded by these cells is different from the type of representation encoded by hippocampal place cells.  相似文献   

6.
A method for determining whether structures distributed along a cell's membrane represent a random spatial distribution is presented in this paper. Two three-dimensional (3-D) images are acquired from one cell by wide-field digital imaging of cells which have been labeled with two different fluorescent antibodies. Prior to spatial analysis, a constrained regularized least squares restoration of the images is performed. This is followed by registration via fiducial markers (dual-labeled beads). A deformable model is then used to map data near the surface to the surface. Finally, each resulting data set is analyzed to determine whether it is spatially random. To do this, we generalize the test for complete spatial randomness of points in a plane, to test voxels distributed along a voxelized membrane in three dimensions. We also test whether the distribution of one protein is independent of the distribution of a second protein. The method is applied to compare the distribution of the protein kinase C to that of vinculin. Vinculin is a protein which anchors intracellular filaments to the cell's plasma membrane. It is also used as a (sparse) membrane marker for the deformable model. Protein kinase C facilitates molecular motors inside the cell. These may be associated with actin and myosin filaments.  相似文献   

7.
1. Pilocarpine administration has been used as an animal model for temporal lobe epilepsy since it produces several morphological and synaptic features in common with human complex partial seizures. Little is known about changes in extracellular neurotransmitter concentrations during the seizures provoked by pilocarpine, a non-selective muscarinic agonist. 2. Focally evoked pilocarpine-induced seizures in freely moving rats were provoked by intrahippocampal pilocarpine (10 mM for 40 min at a flow rate of 2 microl min(-1)) administration via a microdialysis probe. Concomitant changes in extracellular hippocampal glutamate, gamma-aminobutyric acid (GABA) and dopamine levels were monitored and simultaneous electrocorticography was performed. The animal model was characterized by intrahippocampal perfusion with the muscarinic receptor antagonist atropine (20 mM), the sodium channel blocker tetrodotoxin (1 microM) and the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (dizocilpine maleate, 100 microM). The effectiveness of locally (600 microM) or systemically (10 mg kg(-1) day(-1)) applied lamotrigine against the pilocarpine-induced convulsions was evaluated. 3. Pilocarpine initially decreased extracellular hippocampal glutamate and GABA levels. During the subsequent pilocarpine-induced limbic convulsions extracellular glutamate, GABA and dopamine concentrations in hippocampus were significantly increased. Atropine blocked all changes in extracellular transmitter levels during and after co-administration of pilocarpine. All pilocarpine-induced increases were completely prevented by simultaneous tetrodotoxin perfusion. Intrahippocampal administration of MK-801 and lamotrigine resulted in an elevation of hippocampal dopamine levels and protected the rats from the pilocarpine-induced seizures. Pilocarpine-induced convulsions developed in the rats which received lamotrigine perorally. 4. Pilocarpine-induced seizures are initiated via muscarinic receptors and further mediated via NMDA receptors. Sustained increases in extracellular glutamate levels after pilocarpine perfusion are related to the limbic seizures. These are arguments in favour of earlier described NMDA receptor-mediated excitotoxicity. Hippocampal dopamine release may be functionally important in epileptogenesis and may participate in the anticonvulsant effects of MK-801 and lamotrigine. The pilocarpine-stimulated hippocampal GABA, glutamate and dopamine levels reflect neuronal vesicular release.  相似文献   

8.
In this study, the role of metabotropic glutamate receptors in N-methyl-D-aspartate receptor-dependent and voltage-gated calcium channel-dependent long-term potentiation in the dentate gyrus of freely moving rats was investigated. Antagonists for group 1 metabotropic glutamate receptors ((S)-4-carboxyphenylglycine), group 1/2 metabotropic glutamate receptors ((RS)-alpha-methyl-4-carboxyphenylglycine) and group 2 metabotropic glutamate receptors ((RS)-alpha-methylserine O-phosphate monophenylester) were used. The N-methyl-D-aspartate receptor antagonist, D(-)-2-amino-5-phosphonopentanoic acid, and the L-type voltage-gated calcium channel antagonist, methoxyverapamil were used to investigate the N-methyl-D-aspartate receptor and voltage-gated calcium channel contribution to the long-term potentiation recorded. Field excitatory postsynaptic potential slope and population spike amplitude were measured. Drugs were applied, prior to tetanus, via a cannula implanted into the lateral cerebral ventricle. 200 Hz tetanization produces a long-term potentiation which is inhibited by application of D(-)-2-amino-5-phosphonopentanoic acid and (RS)-alpha-methyl-4-carboxyphenylglycine. In this study, a dose-dependent inhibition of 200 Hz long-term potentiation expression was obtained with (S)-4-carboxyphenylglycine. Long-term potentiation induced by 400 Hz tetanization was not inhibited by D(-)-2-amino-5-phosphonopentanoic acid, although the amplitude of short-term potentiation was reduced. (RS)-alpha-methyl-4-carboxyphenylglycine and (S)-4-carboxyphenylglycine, both in the presence and absence of D(-)-2-amino-5-phosphonopentanoic acid, inhibited the development of 400 Hz long-term potentiation. (RS)-alpha-methylserine O-phosphate monophenylester had no significant effect on long-term potentiation induced by either 200 or 400 Hz tetanization. Application of methoxyverapamil significantly inhibited 400 Hz long-term potentiation, but had no effect on 200 Hz long-term potentiation. These data suggest that 400 Hz long-term potentiation, induced in the presence of D(-)-2-amino-5-phosphonopentanoic acid, requires activation of L-type calcium channels. Furthermore, these results strongly support a critical role for group 1 metabotropic glutamate receptors in both N-methyl-D-aspartate receptor- and voltage-gated calcium channel-dependent long-term potentiation.  相似文献   

9.
A system for extracting single-unit activity patterns from multi-unit neural recordings was tested using real and simulated neural data. The system provided reliable estimates of firing frequency for individual units in simulated multi-unit data and allowed reliable determinations of the responses of individual cutaneous mechanoreceptor units to 'natural' stimuli such as brushing or pressing on the skin. An implementation of the system, which operated online and in real time, was used to obtain estimates of multiple, single-unit responses from multi-unit intrafascicular electrode recordings. The pattern of activity across the population of units in a given recording gave a reliable indication of the type of stimulus that had evoked the activity. It was concluded that this system, used in combination with intrafascicular peripheral nerve recordings, could be used to provide online, real-time information about peripheral stimuli.  相似文献   

10.
11.
In vivo microdialysis, radioimmunoassay, and HPLC with electrochemical or fluorometric detection were used to investigate the release of cholecystokinin (CCK), glutamate (Glu), and dopamine (DA) in nucleus accumbens septi (NAS) as a function of ipsilateral electrical stimulation of medial prefrontal cortex (mPFC). CCK was progressively elevated by mPFC stimulation at 50-200 Hz. Stimulation-induced CCK release was intensity-dependent at 250-700 microA. NAS Glu and DA levels were each elevated by stimulation at 25-400 Hz; the dopamine metabolites DOPAC and homovanillic acid were increased by stimulation at 100-400 Hz. When rats were trained to lever press for mPFC stimulation, the stimulation induced similar elevations of each of the three transmitters to those seen with experimenter-administered stimulation. Perfusion of 1 mM kynurenic acid (Kyn) into either the ventral tegmental area (VTA) or NAS blocked lever pressing for mPFC stimulation. VTA, but not NAS, perfusion of Kyn significantly attenuated the increases in NAS DA levels induced by mPFC stimulation. Kyn did not affect NAS CCK or Glu levels when perfused into either the VTA or NAS. The present results are consistent with histochemical evidence and provide the first in vivo evidence for the existence of a releasable pool of CCK in the NAS originating from the mPFC. Although dopamine is the transmitter most closely linked to reward function, it was CCK that showed frequency-dependent differences in release corresponding most closely to rewarding efficacy of the stimulation. Although not essential for the reward signal itself, coreleased CCK may modulate the impact of the glutamatergic action in this behavior.  相似文献   

12.
Synapses of optic afferents (optic synapses) in the suprachiasmatic nucleus of hooded rats were morphometrically evaluated after exposing the animals to 12 h, 14 days, 2 months, and 8 months of constant light (light rats) and darkness (dark rats). Compared with dark rats, optic synapses from light rats have larger boutons with larger mitochondria, more clear vesicles, fewer dense-core vesicles and front-line vesicles, smaller presynaptic dense projections, a smaller amount of postsynaptic density material, a smaller relative number of Gray-type I (asymmetric) junctions, a greater relative number of Gray-type II (symmetric) junctions, as well as more and larger mitochondria in the postsynaptic dendrites. Junctions of optic synapses are mostly straight, but the small number of positively curved contacts are more flattened in light rats than in dark rats. An age-related increase in the size of presynaptic dense projections was also observed. There are no changes in the sizes of clear and dense-core vesicles, in the size of synaptic junctions and their numerical density in area, and in the unspecific contact area between pre- and postsynaptic elements. The changes in optic boutons are characteristic for activated and relatively disused synapses with a slow, tonic firing rate. It appears that (1) the amount of postsynaptic density material is proportional to the strength of Gray-type I synapses, and that (2) some excitatory optic synapses become inhibitory after long-term activity, whereas some inhibitory synapses turn into excitatory contacts after long-term disuse.  相似文献   

13.
The modulation of acetylcholine (ACh) release by 5-HT3 receptor activation was studied using in vivo microdialysis. Spontaneous and K+-stimulated ACh release were measured in frontoparietal cortex and hippocampus of freely moving rats. Two consecutive exposures to high K+ produced ACh release of similar magnitude. In the cortex, serotonin (5-HT) failed to alter spontaneous ACh release, but caused a concentration-dependent decrease of K+-evoked ACh release. Phenylbiguanide (PBG) and m-chlorophenylbiguanide, two selective 5-HT3 agonists, mimicked the 5-HT responses, but 8-hydroxy-2-(di-n-propylamino)tetralin, a selective 5-HT1A agonist, was without effect. However, PBG failed to modify K+-evoked ACh release from the hippocampus. Systemic and local administration of a highly selective 5-HT3 antagonist, tropisetron ((3-alpha-tropanyl)1H-indole-carboxylic acid ester) blocked the effect of both 5-HT and PBG. The inhibition of ACh release by PBG was sensitive to tetrodotoxin. These observations provide direct evidence that, in rat cortex, 5-HT modulates in-vivo release of ACh through activation of 5-HT3 receptors.  相似文献   

14.
While cholinergic stimulation of the PRF evokes a REM-like state, electrical stimulation of LDT/PPT neurons has not been used to test the hypothesis of mesopontine cholinergic control of REM sleep. Adult cats were implanted for electrographic recording and with bipolar unilateral stimulating electrodes, either in the LDT or within the PRF (stimulation control). Baseline recordings of the normal sleep-wake cycle were carried out for 5 h. On the next day, continuous stimulation of the LDT or mPRF was carried out during the same time period (0.5 ms pulses, 1 microA, 8 Hz) and with post-stimulation recording for 3 h. A second baseline recording day followed with same protocol as the first baseline day. This 3-day sequence, separated by 3 days, was repeated three times in each of the three LDT and the three medial PRF cats. Five hours of chronic low-amplitude stimulation of the LDT induced a highly significant increase in total REM and in the duration of REM sleep bouts. Stimulation of the mPRF did not affect any of the behavioral states. This study, the first to our knowledge to use low-amplitude stimulation of LDT in freely moving cats, indicates the importance of mesopontine cholinergic neurons in REM sleep.  相似文献   

15.
Serotonin [5-hydroxytryptamine (5-HT)] is believed to play an important inhibitory role in the regulation of rapid-eye-movement (REM) sleep. 5-HT may exert this effect on neurons of the laterodorsal tegmental (LDT) nuclei that are implicated as important in the generation of REM sleep and phasic REM events such as ponto-geniculo-occipital (PGO) waves and respiratory variability. In rat brainstem in vitro, 5-HT hyperpolarizes and inhibits the bursting properties of LDT neurons assumed to be involved in generating REM sleep and PGO waves. This study tests the hypothesis that in vivo 5-HT at the LDT nuclei suppresses REM sleep and phasic REM events. Ten rats were implanted with bilateral cannulae aimed at the LDT and with electrodes for recording the electroencephalogram, neck electromyogram, PGO waves, and diaphragm electromyogram. During REM sleep, 5-HT (100 nl; 1-1.5 mM), saline, or sham microinjections were performed; repeated microinjections were separated by approximately 1 hr. After the first microinjection, REM sleep as a percent of the total sleep time was reduced with 5-HT (mean percent REM, 19.9 +/- 2.5% for 5-HT vs 26.8 +/- 2.4% for saline; p = 0.02). REM duration was reduced by 37% with 5-HT (p = 0.01), but REM episode frequency was changed less consistently (p = 0.21), suggesting that 5-HT mainly disrupted REM sleep maintenance. Per unit time of REM sleep, 5-HT had no effect on the amount or variability of REM PGO activity (p > 0.740) or on the mean or coefficient of variation of REM respiratory rate (p > 0.11). With subsequent microinjections, the effects of 5-HT on REM sleep were similar. A dose-dependent REM sleep suppression with 5-HT was observed in five rats tested. These data suggest that in vivo 5-HT at the LDT nuclei suppresses REM sleep expression. Although 5-HT did not disproportionately reduce the occurrence of phasic events within REM, total REM phasic activity was reduced because of less REM sleep after 5-HT.  相似文献   

16.
Single cells in the rat anterior thalamic nucleus (ATN) and postsubiculum (PoS) discharge as a function of the rat's directional heading in the horizontal plane, independent of its location. A previous study that compared cell firing during clockwise and counterclockwise head turns concluded that ATN 'head direction' (HD) cell discharge anticipates the rat's future directional heading, while PoS HD cell discharge is in register with the rat's current directional heading (Blair and Sharp [1995] J Neurosci 15:6260-6270). In the current study we extend these findings by using a different method of analysis. HD cells in the ATN and PoS were first characterized by three different measures: peak firing rate, range width, and information content. We then examined how these measures varied when cell firing was aligned with past (negative time shift) or future (positive time shift) head direction of the rat. We report that all three measures were optimized when ATN cell firing was aligned with the animal's future directional heading by about +23 msec. In contrast, PoS HD cell firing was optimized when cell firing was aligned with the rat's past head direction by about -7 msec. When the optimal value was plotted as a function of the amount of time spikes were shifted relative to head orientation, the mean ATN function was shifted to the right of the PoS function only at negative time shifts; at positive time shifts the two functions overlapped. Analysis of two recording sessions from the same cell indicated that each cell in a particular brain area is 'tuned' to a specific time shift so that all cells within a brain area are not uniformly tuned to the same time shift. Other analyses showed that the clockwise and counterclockwise tuning functions were not skewed in the direction of the head turn as postulated by Redish et al. ([1996] Network: Computation in Neural Systems 7:671-685) and Blair et al. ([1997] J Neurophysiol 17:145-159). Additional analysis on episodes when the rat happened to continually point its head in the preferred direction indicated that HD cell firing undergoes little adaptation. In the Discussion, we argue that these results are best accounted for by a motor efference copy signal operating on both types of HD cells such that the copy associated with the PoS HD cells is delayed in time by about 30 msec relative to the copy associated with ATN HD cells.  相似文献   

17.
Optic nerve (ON) stimulation caused a postsynaptic field potential in the suprachiasmatic nucleus (SCN) of rat hypothalamic slices. The postsynaptic field potential was suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA receptor antagonist, in a concentration-dependent manner, but not affected by D-amino-5-phosphonovaleric acid (APV), a competitive NMDA receptor antagonist. Tetanic stimulation to the ON induced long-term potentiation (LTP) in the SCN. Application of APV at 50 microM inhibited the induction of LTP by tetanic stimulation but CNQX at lower dose (5 microM) didn't inhibit it. These results suggest that NMDA receptors are indispensable for the induction of LTP after tetanic stimulation.  相似文献   

18.
The present study was performed to examine the central effects of antidepressants on nociceptive jaw opening reflex after intracisternal injection. we also investigated the mechanisms of central antinociceptive action of intracisternal antidepressants. We recorded the jaw opening reflex in freely moving rats and chose to administer antidepressants intracisternally in order to eliminate the effects of anesthetic agents on the pain assessment and evaluate the importance of the spinal site of action of antidepressants. After intracisternal injection of 15 microg imipramine, digastric electromyogram (dEMG) was decreased to 76+/-6% of the control. Intracisternal administration of 30 microg desipramine, nortriptyline or imipramine suppressed dEMG remarkably to 48+/-2, 27+/-8, or 25+/-5% of the control, respectively. The suppression of dEMG was maintained for 50 min. L-NG-Nitroarginine methyl ester (NAME) blocked the suppression of dEMG from 32+/-2 to 81+/-5% of the control. These results indicate that antidepressants produce antinociception through central mechanisms in the orofacial area. The central NO pathway seems to be involved in the antinociception of intracisternal antidepressants at supraspinal sites.  相似文献   

19.
Neurochemical and morphological effects of repeated microdialysis or permanent microdialysis probe implantations in striatum were studied. The extracellular levels of dopamine did not change between a first and a second probe insertion separated by 2 weeks or at a third dialysis session 2 days later. The 3,4-dihydroxyphenylacetic acid and homovanillic acid levels were similar at the first and second microdialysis session, but decreased at the third. Probes implanted permanently for 2 weeks clogged, and the recovery varied markedly after insertion of new probes. Tyrosine hydroxylase-stained dopamine fibers appeared unaffected after all dialysis sessions, although some swollen fibers were observed surrounding the probes. No change in the glial fibrillary acidic protein staining was seen immediately after the first dialysis session, although 2 weeks later gliosis was observed. After the second and third dialysis a diffuse gliosis was observed, while a glial barrier was seen surrounding the permanently implanted probes. Immediately after the first dialysis session enlarged laminin-stained blood vessels were seen, whereas repeated probe implantation also increased the blood vessel density. Thus, chronic in vivo microdialysis with permanently implanted probes is limited by severe technical problems and marked tissue changes. On the other hand, repeated probe insertion in the same brain site appears to be acceptable for performing chronic microdialysis studies in the same subject, provided neurochemical and morphological changes are taken into consideration.  相似文献   

20.
The present study was carried out to examine the effects of peripheral administration of sulfatedcholecystokinin octapeptide (CCK-8S) on dopamine (DA) turnover in the posterior nucleus accumbens (PNAc) and the caudate-putamen (CP) in awake rats. Microdialysis was used to quantify the extracellular concentrations of DA and its two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). Intraperitoneal injections of CCK-8S (0.3 mg/kg b.wt.) caused a significant increase in DOPAC and HVA concentrations in the PNAc, but did not affect the DA level. Such increases in the metabolite contents were not found in the CP. Similar injections of vehicle (1% NaHCO3 solution, 1 ml/kg b.wt.) did not have an effect in either brain region. In an attempt to determine the type of receptor involved in the CCK-8S-induced changes, CCK tetrapeptide (CCK-4, 0.3 mg/kg b.wt.) known to have high affinity for CCKB subtype or vehicle (10% DMSO-saline, 1 ml/kg b.wt.) was administered intraperitoneally. Neither CCK-4 nor vehicle caused significant changes in any of extracellular DA, DOPAC and HVA contents in the PNAc. These results suggest that peripherally administered CCK-8S has stimulatory effects on the dopaminergic system in the PNAc, and raise the possibility that the effect appears to be mediated via CCKA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号