首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
In this work we report the development of a highly selective and sensitive Gd(III) membrane based on N-(2-pyridyl)-N′-(4-nitrophenyl)thiourea (PyTu4NO2) as an excellent neutral ion carrier. The Gd(III) sensor exhibits a Nernstian slope of 19.95 ± 0.3 mV per decade over the concentration range of 3.0 × 10−7 to 1.0 × 10−1 M, and a detection limit of 3.0 × 10−7 M of Gd(III) ions. The potentiometric response of the sensor is independent of the solution pH in the range of 4.0–9.0. It manifests advantages of low detection limit, fast response time (10 s), and most significantly, very good selectivity with respect to a number of lanthanide ions (La, Ce, Sm, and Eu ions). It can be used at least for a period of 8 weeks without any significant divergences in its potential response. To assess its analytical applicability the proposed Gd(III) sensor was successfully applied as an indicator electrode in the titration of Gd(III) ion solutions with EDTA and for the determination of the fluoride ion in two mouth wash preparations. It was also used for the direct monitoring of Gd(III) ions in binary mixtures.  相似文献   

2.
Nanocrystalline cadmium indium oxide (CdIn2O4) thin films of different thicknesses were deposited by chemical spray pyrolysis technique and utilized as a liquefied petroleum gas (LPG) sensors. These CdIn2O4 films were characterized for their structural and morphological properties by means of X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The dependence of the LPG response on the operating temperature, LPG concentration and CdIn2O4 film thickness were investigated. The results showed that the phase structure and the LPG sensing properties changes with the different thicknesses. The maximum LPG response of 46% at the operation temperature of 673 K was achieved for the CdIn2O4 film of thickness of 695 nm. The CdIn2O4 thin films exhibited good response and rapid response/recovery characteristics to LPG.  相似文献   

3.
Successive Ionic Layer Adsorption and Reaction (SILAR) was used to form Cd(OH)2 thin films from aqueous cadmium–ammonia complex on glass substrates at room temperature and the thermal annealing effect on thin films was studied. The as-deposited films were annealed at 200, 300 and 400 °C for 1 h in an oxygen atmosphere for conversion from Cd(OH)2 to CdO and change in the structural, optical and electrical properties of the films and the effect of the light on the electrical properties of the films were investigated. The structural and surface morphological properties of the films were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that Cd(OH)2 phase is converted into the cubic CdO films by annealing. The band gap energy values of films decreased from 3.59 to 2.13 eV through increasing annealing temperature. It was found that the current increased with increasing light intensity and CdO films were more conductive than the as-deposited films.  相似文献   

4.
A new dopamine-derivative, i.e. N-(3,4-dihydroxyphenethyl)-3,5-dinitrobenzamide (N-DHPB), was synthesized and its application was investigated for the simultaneous determination of N-acetylcysteine (NAC) and acetaminophen (AC) using modified multiwall carbon nanotubes paste electrode. This modified electrode exhibited a potent and persistent electron mediating behavior followed by well separated oxidation peaks of NAC and AC. The peaks current of differential pulse voltammograms of NAC and AC increased linearly with their concentration in the ranges of 0.5-200 μmol L−1 NAC and 15.0-270 μmol L−1 AC. The detection limits for NAC and AC were 0.2 μmol L−1 and 10.0 μmol L−1, respectively. The relative standard deviation for seven successive assays of 1.0 and 30.0 μmol L−1 NAC and AC were 1.7% and 2.2%, respectively. The proposed sensor was successfully applied for the determination of NAC in human urine, tablet, and serum samples.  相似文献   

5.
Nearly monodisperse Co3O4 nanocubes have been prepared by a microwave-assisted solvothermal (MS) method at 180 °C for 20 min. The samples are characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD pattern and TEM images of the products illustrated that Co3O4 nanocubes had a cubic phase with a lateral size of ∼20 nm. The gas response of the Co3O4 nanocubes was studied to several typical organic gases. The Co3O4 nanocubes showed good gas sensing performance towards xylene and ethanol vapors with rapid and high responses at a low-operating temperature. The results showed that the Co3O4 nanocubes can be used to fabricate high performance gas sensors.  相似文献   

6.
Nanostructured perovskite CdSnO3 and Pt-CdSnO3 thin films were prepared using ultrasonic spray pyrolysis technique. The nozzle (driven by ultrasonic frequency of 120 kHz) fixed on microprocessor controlled motorized arm could move in X–Y direction and spray onto heated (300 °C) glass substrate to give the films of repeatable thickness and microstructure. Structural and microstructural properties of the films were studied using X-ray diffraction and transmission electron microscopy (TEM), respectively. The sensing performance of the films was tested for CWA simulants, such as, CEES (2-chloroethyl ethyl sulfide C4H9ClS), DMMP (dimethyl methyl phosphonate C3H9O3P) and CEPS (2-chloroethyl phenyl sulfide C8H9ClS). Both CdSnO3 and Pt-CdSnO3 showed higher response, better selectivity and faster speed of response to CEES as compared to their responses of DMMP and CEPS. CEES response of Pt-CdSnO3 is larger than the response of CdSnO3. The results are discussed and interpreted.  相似文献   

7.
A novel sensor was developed for simultaneous detection of Pb, Cd and Zn, based on the differential pulse anodic stripping response at a bismuth/poly(p-aminobenzene sulfonic acid) (Bi/poly(p-ABSA)) film electrode. This electrode was generated in situ by depositing simultaneously bismuth and the metals by reduction at −1.40 V on the poly(p-ABSA) modified electrode. Compared with the bismuth film electrode, the Bi/poly(p-ABSA) film electrode can yield a larger stripping signal for Pb, Cd and Zn. Under the optimum conditions, a linear response was observed for Cd and Zn in the range from 1.00 to 110.00 μg L−1 and for Pb in the range from 1.00 to 130.00 μg L−1. The detection limits of Pb(II), Cd(II) and Zn(II) were 0.80, 0.63 and 0.62 μg L−1, respectively. Finally this sensor had been applied to the simultaneous determination of Pb(II), Cd(II) and Zn(II) in river water samples and the results were quite corresponding to the value obtained by atomic absorption spectrometry.  相似文献   

8.
R.  S.M.  K.   《Sensors and actuators. B, Chemical》2007,120(2):745-753
The glassy carbon electrode (GCE) modified with Mo(CN)84−-incorporated-poly(4-vinylpyridine) (PVP/Mo(CN)84−), which has been recently shown to possess several attractive attributes as an efficient electrocatalytic electrode for l-ascorbic acid oxidation and its estimation, is used for l-ascorbic acid estimation directly in orange fruit juice and Celin tablet in a 0.1 M H2SO4 acid solution without any special treatment. Constant potential amperometry at 570 mV (saturated calomel electrode, SCE) in stirred solutions is used for this purpose. A good correlation is attained with the official titrametric method. To understand the possible electrocatalytic reaction mechanism for the electro-oxidation of l-ascorbic acid, calibration graphs over the range 1 × 10−5 to 1 × 10−2 mol dm−3 l-ascorbic acid are compared for the three electrodes, ca. PVP/Mo(CN)84−, undoped PVP, and GCE; the curvature at high ascorbic acid concentration for the PVP/Mo(CN)84− electrode is explained in terms of Michaelis–Menten (MM) saturation kinetics. The apparent MM constant (KM), the maximum catalytic current (iM), the complex decomposition rate constant (kc), and the heterogeneous modified electrode rate constant (kME) are calculated from three different approaches. A reasonably high value of ≈1 × 10−2 cm s−1 is obtained for kME, indicating efficient l-ascorbic acid mediation at the PVP/Mo(CN)84− electrode, thus accounting for quite a high sensitivity of this modified film electrode compared to several other modified electrodes.  相似文献   

9.
A new Mn(II) complex of MnL2Cl2 (L = azino-di(5,6-azafluorene)-κ2-NN′) was synthesized and utilized as an electrochemical indicator for the determination of hepatitis B virus (HBV) based on its interaction with MnL2Cl2. The electrochemical behavior of interaction of MnL2Cl2 with salmon sperm DNA was investigated on glassy carbon electrode (GCE). In the presence of salmon sperm DNA, the peak current of [MnL2]2+ was decreased and the peak potential was shifted positively without appearance of new peaks. The binding ratio between [MnL2]2+ and salmon sperm DNA was calculated to be 2:1 and the binding constant was 3.72 × 108 mol2 L−2. The extent of hybridization was evaluated on the basis of the difference between signals of [MnL2]2+ with probe DNA before and after hybridization with complementary sequence. Control experiments performed with non-complementary and mismatch sequence demonstrated the good selectivity of the biosensor. With this approach, a sequence of the HBV could be quantified over the range from 1.76 × 10−8 to 1.07 × 10−6 mol L−1, with a linear correlation of r = 0.9904 and a detection limit of 6.80 × 10−9 mol L−1. Additionally, the binding mechanism was preliminarily discussed. The mode of interaction between MnL2Cl2 and DNA was found to be primary intercalation binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号