首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Monodispersed TiO2 spherical colloids with diameters of about 250 nm were prepared by a sol-gel method. Heterostructural Ag-TiO2 spheres were manipulated by surface engineering, in which the Ag nanoparticles with an average size of 10 nm were uniformly distributed on the surface of the TiO2 nanospheres by in situ reduction and growth. The gas-sensing properties of the TiO2 nanospheres and heterostructural Ag-TiO2 nanospheres to ethanol and acetone were measured at 350 °C. The results indicated that Ag nanoparticles greatly enhanced the response, stability and response characteristic of TiO2 nanospheres to the tested gases. Response times of Ag-TiO2 sensor to 30 ppm acetone and 50 ppm ethanol were <5 s.  相似文献   

2.
In this study, pure and Pt-loaded nanocrystalline γ-Fe2O3 have been prepared by precipitation using ultrasonic irradiation. The synthesized powders were characterized by X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), differential thermal analysis (DTA), transmission electron micrograph (TEM), selected area electron diffraction (SAED), scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Pure nanocrystallline γ-Fe2O3 sensors were found to show good response towards sub ppm level of acetone at 250 °C, and improves significantly on Pt loading. As an example, 1 wt% Pt loading of nanocrystallline γ-Fe2O3 increased its response towards acetone by 55%. The high response of γ-Fe2O3 holds it as a potentially promising candidate for acetone detection which may lead for the non-invasive testing of diabetics.  相似文献   

3.
Nanocrystalline WO3/TiO2-based powders have been prepared by the high energy activation method with WO3 concentration ranging from 1 to 10 mol%. The samples were thermal treated in a microwave oven at 600 °C for 20 min and their structural and micro-structural characteristics were evaluated by X-ray diffraction, Raman spectroscopy, EXAFS measurements at the Ti K-edge, and transmission electron microscopy. Nitrogen adsorption isotherms and H2 Temperature Programmed Reduction were also carried out for physical characterization. The crystallite and particle mean sizes ranged from 30 to 40 nm and from 100 to 190 nm, respectively. Good sensor response was obtained for samples with at least 5 mol% WO3 activated for at least 80 min. Ceramics heat-treated in microwave oven for 20 min have shown similar sensor response as those prepared in conventional oven for 120 min, which is highly cost effective. These results indicate that WO3/TiO2 ceramics can be used as a humidity sensor element.  相似文献   

4.
Nanostrucutred spinel ZnCo2O4 (∼26-30 nm) was synthesized by calcining the mixed precursor (consisting of cobalt hydroxyl carbonate and zinc hydroxyl carbonate) in air at 600 °C for 5 h. The mixed precursor was prepared through a low cost and simple co-precipitation/digestion method. The transformation of the mixed precursor into nanostructured spinel ZnCo2O4 upon calcinations was confirmed by X-ray diffraction (XRD) measurement, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM). To demonstrate the potential applicability of ZnCo2O4 spinel in the fabrication of gas sensors, its LPG sensing characteristics were systematically investigated. The ZnCo2O4 spinel exhibited outstanding gas sensing characteristics such as, higher gas response (∼72-50 ppm LPG gas at 350 °C), response time (∼85-90 s), recovery time (∼75-80 s), excellent repeatability, good selectivity and relatively lower operating temperature (∼350 °C). The experimental results demonstrated that the nanostructured spinel ZnCo2O4 is a very promising material for the fabrication of LPG sensors with good sensing characteristics. Plausible LPG sensing mechanism is also discussed.  相似文献   

5.
Nanostructured hollow spheres of SnO2 with fine nanoparticles were synthesized by ultrasonic atomization. Thick film gas sensors were fabricated by screen printing technique. Different surface modified films (Fe2O3 modified SnO2) were obtained by dipping them into an aqueous solution (0.01 M) of ferric chloride for different intervals of time followed by firing at 500 °C. The structural and microstructural studies of the samples were carried out using XRD, SEM, and TEM. The sensing performance of pure and modified films was studied by exposing various gases at different operating temperatures. One of the modified sample exhibited high response (1990) to 1000 ppm of LPG at 350 °C. Optimum amount of Fe2O3 dispersed evenly on the surface, adsorption and spillover of LPG on Fe2O3 misfits and high capacity of adsorption of oxygen on nanostructured hollow spheres may be the reasons of high response.  相似文献   

6.
We report a novel route for the fabrication of highly sensitive and rapidly responding Nb2O5-based thin film gas sensors. TiO2 doping of Nb2O5 films is carried out by co-sputtering without the formation of secondary phases and the surface area of TiO2-doped Nb2O5 films is increased via the use of colloidal templates composed of sacrificial polystyrene beads. The gas sensitivity of Nb2O5 films is enhanced through both the TiO2 doping and the surface embossing. An additional enhancement on the gas sensitivity is obtained by the optimization of the bias voltage applied between interdigitated electrodes beneath Nb2O5-based film. More excitingly, such a voltage optimization leads to a substantial decrease in response time. Upon exposure to 50 ppm CO at 350 °C, a gas sensor based on TiO2-doped Nb2O5 film with embossed surface morphology exhibits a very high sensitivity of 475% change in resistance and a rapid response time of 8 s under 3 V, whereas a sensor based on plain Nb2O5 film shows a 70% resistance change and a response time of 65 s under 1 V. Thermal stability tests of our Nb2O5-based sensor reveal excellent reliability which is of particular importance for application as resistive sensors for a variety gases.  相似文献   

7.
Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 (BNT-BKT) powder is synthesized by a metal-organic decomposition method and characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). A humidity sensor, which is consisted of five pairs of Ag-Pd interdigitated electrodes and an Al2O3 ceramic substrate, is fabricated by spin-coating the BNT-BKT powder on the substrate. Good humidity sensing properties such as high response value, short response and recovery times, and small hysteresis are observed in the sensing measurement. The impedance changes more than four orders of magnitude within the whole humidity range from 11% to 95% relative humidity (RH) at 100 Hz. The response time and recovery time are about 20 and 60 s, respectively. The maximum hysteresis is around 4% RH. The results indicate that BNT-BKT powder is of potential applications for fabricating high performance humidity sensors.  相似文献   

8.
Appreciable changes in resistance of polycrystalline nanosized CuNb2O6 upon exposure to reducing gases like hydrogen, liquefied petroleum gas (LPG) and ammonia in ambient atmosphere recognize the material as a gas sensor. Nanosized CuNb2O6 synthesized by thermal decomposition of an aqueous precursor solution containing copper nitrate, niobium tartrate and tri-ethanol amine (TEA), followed by calcination at 700 °C for 2 h, has been characterized using X-ray diffraction (XRD) study, transmission electron microscopy (TEM), field-emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) analysis and Brunauer–Emmett–Teller (BET) surface area measurement. The synthesized CuNb2O6 exhibits monoclinic structure with crystallite size of 25 nm, average particle size of 25–40 nm and specific surface area of 55 m2 g−1.  相似文献   

9.
The α-Fe2O3 nanorods were successfully synthesized without any templates by calcining the α-FeOOH precursor in air at 300 °C for 2 h and their LPG sensing characteristics were investigated. The α-FeOOH precursor was prepared through a simple and low cost wet chemical route at low temperature (40 °C) using FeSO4·7H2O and CH3COONa as starting materials. The formation of α-FeOOH precursor and its topotactic transformation to α-Fe2O3 upon calcination was confirmed by X-ray diffraction measurement (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis. The α-Fe2O3 nanorods exhibited outstanding gas sensing characteristics such as, higher gas response (∼1746-50 ppm LPG at 300 °C), extremely rapid response (∼3-4 s), relatively slow recovery (∼8-9 min), excellent repeatability, good selectivity and lower operating temperature (∼300 °C). Furthermore, the α-Fe2O3 nanorods are able to detect up to 5 ppm for LPG with reasonable response (∼15) at the operating temperature of 300 °C and they can be reliably used to monitor the concentration of LPG over the range (5-60 ppm). The experimental results clearly demonstrate the potential of using the α-Fe2O3 nanorods as sensing material in the fabrication of LPG sensors. Plausible LP G sensing mechanism of the α-Fe2O3 nanorods is also discussed.  相似文献   

10.
Nanocrystalline cadmium indium oxide (CdIn2O4) thin films of different thicknesses were deposited by chemical spray pyrolysis technique and utilized as a liquefied petroleum gas (LPG) sensors. These CdIn2O4 films were characterized for their structural and morphological properties by means of X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The dependence of the LPG response on the operating temperature, LPG concentration and CdIn2O4 film thickness were investigated. The results showed that the phase structure and the LPG sensing properties changes with the different thicknesses. The maximum LPG response of 46% at the operation temperature of 673 K was achieved for the CdIn2O4 film of thickness of 695 nm. The CdIn2O4 thin films exhibited good response and rapid response/recovery characteristics to LPG.  相似文献   

11.
Nanocrystalline undoped and Cd-doped γ-Fe2O3 powders were synthesized by an anhydrous solvent method and characterized by thermogravimetric analysis (TGA), differential thermal analysis (DTA), X-ray diffraction (XRD) and transmission electron micrograph (TEM). The gas sensitivity measurements indicated that both the undoped (operated at 240 °C) and the 5 mol% Cd-doped γ-Fe2O3 sensors (operated at 270 °C) exhibited high response to acetone and ethanol, moderate response to petrol, poor response to liquefied petroleum gas (LPG), H2 and CO. Furthermore, the 5 mol% Cd-doped γ-Fe2O3 sensor presented shorter response and recovery times, better long-time stability, larger response and better selectivity to acetone and ethanol than the undoped sensor. The present undoped and Cd-doped γ-Fe2O3 sensors obtained by an anhydrous solvent method were almost insensitive to LPG, while the reported γ-Fe2O3 sensors prepared by a hydrous solution method were generally sensitive to LPG, suggesting that the preparation method played a key role in determining the gas sensing properties.  相似文献   

12.
Crystalline CeO2/TiO2 core/shell nanorods were fabricated by a hydrothermal method and a subsequent annealing process under the hydrogen and air atmosphere. The thickness of the outer shell composed of crystal TiO2 nanoparticles can be tuned in the range of 5-11 nm. The crystal core/shell nanorods exhibited enhanced gas-sensing properties to ethanol vapor in terms of sensor response and selectivity. The calculated sensor response based on the change of the heterojunction barrier formed at the interface between CeO2 and TiO2 is agreed with the experimental results, and thus the change of the heterojunction barrier at different gas atmosphere can be used to explain the enhanced ethanol sensing properties.  相似文献   

13.
Large-scale novel core-shell structural SnO2/ZnSnO3 microspheres were successfully synthesized by a simple hydrothermal method with the help of the surfactant poly(vinyl pyrrolidone) PVP. The as-synthesized samples were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The results indicate that the shell was formed by single crystalline ZnSnO3 nanorods and the core was formed by aggregated SnO2 nanoparticles. The effects of PVP and hydrothermal time on the morphology of SnO2/ZnSnO3 were investigated. A possible formation mechanism of these hierarchical structures was discussed. Moreover, the sensor performance of the prepared core-shell SnO2/ZnSnO3 nanostructures to ethanol was studied. The results indicate that the as-synthesized samples exhibited high response and quick response-recovery to ethanol.  相似文献   

14.
Synthesis and gas sensing properties of bundle-like α-Fe2O3 nanorods   总被引:1,自引:0,他引:1  
Bundle-like α-Fe2O3 nanostructures were successfully synthesized by a simple calcination of β-FeOOH precursor derived from a hydrothermal method in the presence of poly(vinyl pyrrolidone). The as-prepared products were characterized by X-ray power diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The results indicated that bundle-like nanostructures were composed of well-aligned single crystalline nanorods with the diameters of 20-30 nm and the lengths of 200-300 nm. The gas sensing properties of as-prepared products were investigated. It was found that the sensor based on α-Fe2O3 nanostructure exhibited high response, quick response-recovery, and good repeatability to acetone at 250 °C.  相似文献   

15.
Nearly monodisperse Co3O4 nanocubes have been prepared by a microwave-assisted solvothermal (MS) method at 180 °C for 20 min. The samples are characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD pattern and TEM images of the products illustrated that Co3O4 nanocubes had a cubic phase with a lateral size of ∼20 nm. The gas response of the Co3O4 nanocubes was studied to several typical organic gases. The Co3O4 nanocubes showed good gas sensing performance towards xylene and ethanol vapors with rapid and high responses at a low-operating temperature. The results showed that the Co3O4 nanocubes can be used to fabricate high performance gas sensors.  相似文献   

16.
Hierarchical SnO2 microspheres were synthesized by a hydrothermal method at 140 °C using stannic chloride hydrate and sodium hydroxide as starting materials. The individual hierarchical SnO2 microsphere ranged from 700 to 900 nm in diameter. After these microspheres were heated at 600 °C for 2 h, the spheres were cross-linked into clusters by short SnO2 nanorods as revealed by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Most importantly, SnO2 hierarchical microsphere sensor exhibits excellent selectivity and fast response to ethanol. Response and recovery times were 0.6 s and 11 s when the sensor was exposed to 50 ppm ethanol at an operating temperature of 300 °C. Thus, hierarchical structures play a significant role in the field of gas sensing.  相似文献   

17.
Qi  Tong  Xuejun  Huitao  Li  Rui  Yi 《Sensors and actuators. B, Chemical》2008,134(1):36-42
Pure and Sm2O3-doped SnO2 are prepared through a sol–gel method and characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The sensor based on 6 wt% Sm2O3-doped SnO2 displays superior response at an operating temperature of 180 °C, and the response magnitude to 1000 ppm C2H2 can reach 63.8, which is 16.8 times larger than that of pure SnO2. This sensor also shows high sensitivity under various humidity conditions. These results make our product be a good candidate in fabricating C2H2 sensors.  相似文献   

18.
Toxic and combustible gas detection plays a major role in environmental air quality monitoring. Real-time monitoring of hazardous gases and signal of accidental leakages is of great importance owing to the concern for safety requirements in industries and household applications. A simple and economical method for the fabrication of highly sensitive zinc oxide (ZnO) nanorods based gas sensors for detecting low concentrations of Liquefied Petroleum Gas (LPG) was studied in this work. Platinum (Pt) nanoparticles were deposited on the sensing medium which acts as catalysts to improve the sensor performance. The change in electrical resistance of the metal oxide semiconductor for varying concentrations of LPG was measured. Maximum response of 59% was achieved for 9000 ppm LPG at 250 °C. Further to improve the sensing performance of the sensor towards LPG, surface modification of ZnO nanorods using zinc stannate (Zn2SnO4) microcubes was performed. High response of 63% was observed for 3000 ppm LPG at 250 °C. Significant improvement in response of the sensor with Zn2SnO4 microcubes on ZnO nanorods was observed when compared to sensor with ZnO nanorods.  相似文献   

19.
A new gas sensor using TiO2 nanotube arrays was fabricated and explored for formaldehyde detection at room temperature. Highly ordered vertically grown TiO2 nanotube arrays were synthesized by using the conventional electrochemical anodization process. The sensor using the fabricated nanotube arrays as the sensing elements demonstrated a good response to different concentrations of formaldehyde from 10 to 50 ppm and a very good selectivity over other reducing gas species such as ethanol and ammonia at room temperature. While the exact sensing mechanism is unclear, some possibilities are briefly discussed.  相似文献   

20.
Indium oxide (In2O3) doped with 0.5-5 at.% of Ba was examined for their response towards trace levels of NOx in the ambient. Crystallographic phase studies, electrical conductivity and sensor studies for NOx with cross interference for hydrogen, petroleum gas (PG) and ammonia were carried out. Bulk compositions with x ≤ 1 at.% of Ba exhibited high response towards NOx with extremely low cross interference for hydrogen, PG and ammonia, offering high selectivity. Thin films of 0.5 at.% Ba doped In2O3 were deposited using pulsed laser deposition technique using an excimer laser (KrF) operating at a wavelength of (λ) 248 nm with a fluence of ∼3 J/cm2 and pulsed at 10 Hz. Thin film sensors exhibited better response towards 3 ppm NOx quite reliably and reproducibly and offer the potential to develop NOx sensors (Threshold limit value of NO2 and NO is 3 and 25 ppm, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号